首页> 外文学位 >Diagnostic measurements of optically thick and inhomogeneous laser induced plasmas with emphasis on self-absorption effects.
【24h】

Diagnostic measurements of optically thick and inhomogeneous laser induced plasmas with emphasis on self-absorption effects.

机译:光学厚度和不均匀激光诱导等离子体的诊断测量,重点是自吸收效应。

获取原文
获取原文并翻译 | 示例

摘要

Laser induced plasmas (LIP) have increased in popularity and the number of applications throughout the fields of science and technology. With this hike in usage, it is pivotal that there are trustworthy methods to describe the plasma dynamics. One of the main problems with determining various LIP parameters (temperature, number densities, etc.) is that all emission lines suffer from self-absorption to some degree; therefore, a reliable method of determining the degree of self-absorption that a spectral line experiences is necessary.;Temperature is the most important plasma parameter, and many plasma parameters are dependent on the plasma on it. Therefore, the temperature must be known accurately. The most popular spectroscopic method to determine the plasma temperature is the Boltzmann plot method. It is well known for its simplicity and easy use. However, the Boltzmann plot method cannot handle self-absorption. Under optically thick plasma conditions where self-absorption can not be ignored, the Boltzmann plot can produce inaccurate temperature values. For cases where self-absorption can not be neglected, alternative methods of calculating temperatures must be used. A 2-line method based on Bartels' model is one such method designed to produce accurate temperature measurements under optically-thick conditions.;This research presents a fundamental comparison of the 2-line Bartels' method and the Boltzmann plot method to calculate the time-resolved temperatures of a LIP created on different Ba-containing targets. Emission lines from the same type of plasma were used to determine the temperatures. For the temperature calculations with the Boltzmann plot method, the requirement of "only optically-thin lines" was purposely violated in order to view the effects of self-absorption. It was found that early in the plasma lifetime before 2 micros, that the Boltzmann plot method predicted higher temperature values than the Bartels' method. This is due to the self-absorption experienced by each individual spectral line in the Boltzmann plot.;In addition, this research introduces the Duplication factor (D) as a way to measure the degree of self-absorption experienced by a spectral line emitted from the LIP and as an avenue to calculate time resolved ionic number densities of different regions of the plasma. The ionic number density was determined by taking calculated D's and fitting them to theoretical Gouy (or duplication) curves. Several Barium (Ba) ion emission lines were observed from a pure Ba target with a Laser Induced Breakdown set-up containing a Nd:YAG laser, Acton 0.5 m spectrometer, and gated ICCD, and a spherical mirror was used for the duplication.
机译:在整个科学和技术领域,激光诱导等离子体(LIP)的普及和应用数量均有所增加。随着使用量的增加,至关重要的是要有可靠的方法来描述等离子体动力学。确定各种LIP参数(温度,数量密度等)的主要问题之一是,所有发射线都会在某种程度上遭受自吸收。因此,确定光谱线所经历的自吸收程度的可靠方法是必要的。温度是最重要的等离子体参数,许多等离子体参数取决于其上的等离子体。因此,必须准确知道温度。确定等离子体温度的最流行的光谱方法是玻耳兹曼图法。它以其简单易用而闻名。但是,玻耳兹曼图法不能处理自吸收。在无法忽略自吸收的光学厚等离子体条件下,玻耳兹曼图可能会产生不准确的温度值。对于不能忽略自身吸收的情况,必须使用其他计算温度的方法。一种基于Bartels模型的2线方法就是设计用于在光学厚度条件下产生精确温度测量值的一种方法;该研究提出了2线Bartels方法和Boltzmann绘图方法用于计算时间的基本比较-在不同的含Ba靶上产生的LIP的解析温度。来自相同类型等离子体的发射线用于确定温度。用玻尔兹曼图法进行温度计算时,有意违反了“仅光学细线”的要求,以便观察自吸收的影响。发现在等离子寿命早于2微米之前,玻耳兹曼图法预测的温度值要高于Bartels法。这是由于Boltzmann图中每个光谱线都经历了自吸收;此外,本研究引入了重复因子(D)作为一种测量从光谱发射的光谱线所经历的自吸收程度的方法LIP作为计算时间的离子在不同区域的离子数密度的途径。离子数密度是通过计算D并将其拟合至理论Gouy(或重复)曲线确定的。从具有激光诱导击穿设置的纯Ba目标中观察到了几条钡(Ba)离子发射线,该设置包含Nd:YAG激光,Acton 0.5 m光谱仪和门控ICCD,并且使用球面镜进行复制。

著录项

  • 作者

    Moore, Galan G.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号