首页> 外文学位 >Computational Investigation of Convective Heat Transfer on Ice-Roughened Aerodynamic Surfaces
【24h】

Computational Investigation of Convective Heat Transfer on Ice-Roughened Aerodynamic Surfaces

机译:冰粗糙空气动力学表面对流传热的计算研究

获取原文
获取原文并翻译 | 示例

摘要

Ice accretion on aerodynamic surfaces of aircraft is a fundamental safety hazard. Accreted ice has an abundance of geometric scales, from the size of the gross features such as horns and scallops down to the minute details of individual frozen droplets. The smallest geometric scales take the form of surface roughness, which has a firstorder effect on the ice growth. This presents many challenges to analysis methods, especially for Computational Fluid Dynamics (CFD). Directly resolving roughness with CFD can increase the size of the computational mesh by orders of magnitude. Equivalent Sand-Grain Roughness (SGR) models are the only commonly used way to account for surface roughness in CFD; however, these methods are fundamentally unable to resolve the physics relevant to convective heat transfer.;The Discrete Element Roughness Method (DERM) is proposed and evaluated as an engineering solution to the problem of convective heat transfer on rough surfaces. DERM shows potential to improve heat transfer predictions beyond the capability of SGR models while only slightly increasing the computation time. As part of the present work, DERM is derived for and implemented in a general-purpose CFD solver and explored as a way of modeling the sub-resolved roughness scales. In order to establish DERM for ice roughness, a fundamental understanding of the relevant flow physics and heat transfer is developed.;High-resolution Computerized Tomography (CT) scans of ice-roughened airfoils are used to generate Computer Aided Drafting (CAD) models. The CAD models are analyzed to develop a deeper understanding of the geometric character of the ice roughness. Reynolds-Averaged Navier Stokes (RANS) simulations of the flow over an iced airfoil as well as a Large Eddy Simulation (LES) are used to develop understanding of how the roughness interacts with the boundary layer near the leading edge of an airfoil. The details of the turbulent flow field are extracted from the LES and compared with the RANS model predictions.;These models are also used to develop an understanding of the DERM modeling assumptions. One such assumption is neglect of the "dispersive stresses" and "dispersive energy fluxes"; these are quantified from the LES of an ice-roughened airfoil. The results show that the dispersive stresses are not negligible; in fact, they can be quite large compared with the Reynolds stresses. This result indicates that DERM may be improved for use with ice-roughened airfoils by development of computational models for the dispersive terms.;Finally, DERM-based CFD solutions are coupled with LEWICE to predict ice-growth on airfoils. The DERM-LEWICE predictions are compared with ice shapes generated in experiments and indicate that DERM has potential to improve ice-shape predictions in the glaze-icing regime.
机译:飞机空气动力学表面上积冰是基本的安全隐患。从角和扇贝等总体特征的大小到单个冷冻液滴的细微细节,积出的冰具有丰富的几何尺度。最小的几何比例采用表面粗糙度的形式,这对冰的生长具有一级影响。这给分析方法提出了许多挑战,特别是对于计算流体动力学(CFD)。用CFD直接解决粗糙度可以将计算网格的大小增加几个数量级。等效沙粒粗糙度(SGR)模型是解决CFD中表面粗糙度的唯一常用方法。然而,这些方法从根本上无法解决与对流换热有关的物理问题。提出了离散元粗糙度法(DERM),并将其作为对粗糙表面上对流换热问题的工程解决方案进行评估。 DERM显示出改进传热预测的潜力,超越了SGR模型的能力,同时仅稍微增加了计算时间。作为当前工作的一部分,DERM是为通用CFD求解器派生并在其中实现的,并被探索为建模子分辨粗糙度标度的一种方式。为了建立用于冰粗糙度的DERM,开发了对相关流动物理学和热传递的基本理解。;高分辨率扫描粗糙化翼型的计算机断层扫描(CT)扫描用于生成计算机辅助绘图(CAD)模型。对CAD模型进行了分析,以加深对冰粗糙度的几何特征的了解。利用雷诺平均的Navier Stokes(RANS)对冰翼上的流动进行仿真,并使用大涡流模拟(LES)来了解粗糙度如何与翼型前缘附近的边界层相互作用。从LES中提取了湍流场的详细信息,并将其与RANS模型的预测结果进行了比较。这些模型还用于加深对DERM建模假设的理解。一种这样的假设是忽略了“分散应力”和“分散能量通量”。这些从冰粗糙的机翼的LES中量化。结果表明,分散应力不可忽略。实际上,与雷诺兹的压力相比,它们可能很大。该结果表明,通过开发色散项的计算模型,可将DERM改进以用于加冰的机翼。最后,基于DERM的CFD解决方案与LEWICE结合以预测机翼上的冰增长。将DERM-LEWICE预测值与实验中生成的冰形状进行了比较,表明DERM有潜力改善在结冰过程中冰形状的预测。

著录项

  • 作者

    Hanson, David R.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 445 p.
  • 总页数 445
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号