首页> 外文学位 >Improving Medium-Range Streamflow Forecasting Across the U.S. Middle Atlantic Region
【24h】

Improving Medium-Range Streamflow Forecasting Across the U.S. Middle Atlantic Region

机译:改善整个美国中大西洋地区的中程流量预报

获取原文
获取原文并翻译 | 示例

摘要

Short- to medium-range (forecast lead times from 0 to 14 days) streamflow forecasts are subject to uncertainties from various sources. A major source of uncertainty is due to the weather or meteorological forcing. In turn, the uncertainties from the meteorological forcing are propagated into the streamflow forecasts when using the meteorological forecasts (i.e., the outputs from a Numerical Weather Prediction (NWP) model) as forcing to hydrological models. Additionally, the hydrological models themselves are another important source of uncertainty, where uncertainty arises from model structure, parameters, initial and boundary conditions. To advance the science of hydrological modeling and forecasting, these uncertainties need to be quantified and modeled, using novel statistical techniques and robust verification strategies, with the goal of improving the skill and reliability of streamflow forecasts. This, ultimately, may allow generating in advance (i.e., with longer lead times) more informative forecasts, which could eventually translate into better emergency preparedness and response.;The main research goal of this dissertation is to develop, implement and verify a new regional hydrological ensemble prediction system (RHEPS), comprised by a numerical weather prediction (NWP) model, different hydrological models and different statistical bias-correction techniques. To implement and verify the new RHEPS, the U.S. middle Atlantic region (MAR) is selected as the study area. This is a region of high socioeconomic value with populated cities and, at the same time, vulnerable to floods and other natural disasters. To meet my research goal, the following objectives are carried out: Objective 1 (O1) - To choose a relevant NWP model or system by evaluating and verifying the outputs from different meteorological forecasting systems (i.e., the outputs or forecasts from their underlying NWP models); Objective 2 (O2) - To verify streamflow forecasts generated by forcing a distributed hydrological model with meteorological ensembles, and to develop and evaluate a statistical postprocessor to quantify the uncertainty and adjust biases in the streamflow forecasts; Objective 3 (O3) - To develop, implement and rigorously verify a multimodel approach for short- to medium-range streamflow forecasting. The overarching hypothesis of this dissertation is that the combination and configuration of the different system components in the streamflow forecasting system can have a significant influence on forecast uncertainty and that hydrological multimodeling is able to significantly enhance the quality of streamflow forecasts. The RHEPS is used to test this hypothesis.;To meet O1, precipitation ensemble forecasts from two different NWP models are verified. The two NWP models are the National Centers for Environmental Prediction (NCEP) 11-member Global Ensemble Forecast System Reforecast version 2 (GEFSRv2) and the 21-member Short Range Ensemble Forecast (SREF) system. The verification results for O1 reveal the quality of the meteorological forcing and serve to inform the decision of selecting a NWP model for O2. As part of O2, the meteorological outputs from the GEFSRv2 are used to force the NOAA's Hydrology Laboratory-Research Distributed Hydrological Model (HL-RDHM) and generate short- to medium-range (1-7 days) ensemble streamflow forecasts for different basins in the MAR. The streamflow forecasts are postprocessed (bias-corrected) using a time series model. The verification results from O2 show that the ensemble streamflow forecasts remain skillful for the entire forecast cycle of 7 days. Additionally, postprocessing increases forecast skills across lead times and spatial scales, particularly for the high flow conditions. Lastly, with O3, a multimodel hydrological framework is tested for medium-range ensemble streamflow forecasts. The results show that the multimodel consistently improves short- to medium-range streamflow forecasts across different basin sizes compared to the single model forecasts.
机译:中短期流量预测(从0到14天的预测交付时间)受各种来源不确定性的影响。不确定性的主要来源是天气或气象强迫。反过来,当使用气象预报(即数值天气预报(NWP)模型的输出)作为对水文模型的强迫时,来自气象强迫的不确定性会传播到流量预报中。此外,水文模型本身是不确定性的另一个重要来源,其中不确定性来自模型结构,参数,初始条件和边界条件。为了推进水文建模和预报科学,需要使用新颖的统计技术和可靠的验证策略对这些不确定性进行量化和建模,以提高水流预报的技能和可靠性。最终,这可以允许提前(即,以更长的交货时间)生成更多的信息预报,最终可以转化为更好的应急准备和响应。;本论文的主要研究目标是开发,实施和验证新的地区水文合奏预报系统(RHEPS),由数值天气预报(NWP)模型,不同的水文模型和不同的统计偏差校正技术组成。为了实施和验证新的RHEPS,选择了美国中大西洋地区(MAR)作为研究区域。这是一个社会经济价值很高的地区,城市人口众多,同时也容易遭受洪水和其他自然灾害的影响。为了实现我的研究目标,需要实现以下目标:目标1(O1)-通过评估和验证不同气象预报系统的输出(即其基本NWP模型的输出或预测)来选择相关的NWP模型或系统);目标2(O2)-验证通过强迫具有气象集合的分布式水文模型产生的流量预报,并开发和评估统计后处理器以量化不确定性并调整流量预报中的偏差;目标3(O3)-开发,实施和严格验证用于中短距离流量预报的多模型方法。本文的主要假设是,流量预报系统中不同系统组成部分的组合和配置对预报不确定性有重要影响,而水文多模型能够显着提高流量预报的质量。 RHEPS用于检验该假设。为了满足O1,验证了来自两个不同NWP模型的降水集合预报。这两个NWP模型分别是美国国家环境预测中心(NCEP)的11个成员的全球整体预报系统重新预报版本2(GEFSRv2)和21个成员的短距离整体预报(SREF)系统。 O1的验证结果揭示了气象强迫的质量,并为选择O2 NWP模型的决策提供依据。作为O2的一部分,GEFSRv2的气象输出被用于强制NOAA的水文实验室研究分布式水文模型(HL-RDHM)并生成针对中美洲不同盆地的中短范围(1-7天)集合流量预测。 MAR。使用时间序列模型对流量预测进行后处理(偏差校正)。 O2的验证结果表明,在7天的整个预测周期内,总体流量预测仍然很熟练。此外,后处理可提高交货时间和空间范围内的预测技能,尤其是在高流量条件下。最后,使用O3,测试了多模型水文框架,以进行中距离集合流预报。结果表明,与单一模型预测相比,该多模型持续改善了不同流域规模的中短期流量预测。

著录项

  • 作者

    Siddique, Ridwan.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Civil engineering.;Hydrologic sciences.;Water resources management.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号