首页> 外文学位 >Development of a novel micro echo particle image velocimetry system.
【24h】

Development of a novel micro echo particle image velocimetry system.

机译:新型微回波粒子图像测速系统的开发。

获取原文
获取原文并翻译 | 示例

摘要

The microfluidics industry is currently valued at several billion dollars, and it is still growing, pushed by the development of such devices as the Flu Chip, the Microscale Integrated Sperm Sorter and other micro-total analysis systems (also called lab-on-a-chip). A practical method is required to non-invasively resolve velocity vectors in the flow field for microfluidic flows that are optically opaque.;A new system for microfluidic flow measurement was developed: Micro Echo Particle Image Velocimetry (muEcho PIV). This system used a swept scan of a single element ultrasound transducer to produce sequential images of a flow seeded with microbubbles. The images were cross-correlated, and the resulting PIV vectors were input into a particule tracking velocimetry (PTV) algorithm where they were further refined.;The Micro Echo PIV system used a broad bandwidth mechanically scanned single element transducer to create B-mode images at a transmit frequency of 15.3MHz. This gave the system an axial resolution of 100 mum and a lateral resolution of 200mum at the focal point 25.6 mm from the transducer. The measured dynamic velocity range was 0-4 mm/s. This was acceptable, as microfluidic devices typically have flow rates of 64 muL/min and maximum velocities of less than 10 mm/s.;An advantage of the Micro Echo PIV system is that it can resolve two orthogonal velocity components in a 2-D opaque flow field. A disadvantage of the system is a very low frame rate (mechanically scanned transducer elements are slower than an electronically fired phased array transducer in creating the same image frame).;It is expected that future iterations of this system will use a higher transducer center frequency, for better spatial resolution, and, will optimize the motorized stage path for a higher frame rate and a greater velocity dynamic range.;Potential non-invasive applications include evaluation of hemodynamics in the superficial vasculature of small animal models, and fluid dynamics in polymer microfluidic 2-D and 3-D arrays (with implications for applied and basic research in the agricultural, computer and pharmaceutical industries).
机译:目前,微流体产业的产值达数十亿美元,在诸如Flu Chip,Microscale Integrated Sperm Sorter和其他微总量分析系统(也称为“实验室实验室”)等设备的推动下,微流体产业仍在增长。芯片)。对于光学不透明的微流体流,需要一种实用的方法来无创地解析流场中的速度矢量。开发了一种新的微流体流测量系统:微回波粒子图像测速技术(muEcho PIV)。该系统使用单元素超声换能器的扫掠扫描来产生播种有微气泡的流的顺序图像。图像相互关联,并将生成的PIV向量输入到微粒跟踪测速(PTV)算法中,在此算法中进一步进行完善。Micro Echo PIV系统使用宽带机械扫描的单元素换能器创建B模式图像在15.3MHz的发射频率下。这使系统在距换能器25.6 mm的焦点处的轴向分辨率为100 mum,横向分辨率为200 mum。测得的动态速度范围是0-4mm / s。这是可以接受的,因为微流体设备通常的流速为64μL/ min,最大速度小于10 mm / s。; Micro Echo PIV系统的一个优势在于,它可以在二维中解析两个正交的速度分量不透明流场。该系统的一个缺点是帧速率非常低(在创建相同的图像帧时,机械扫描的换能器元件比电子发射的相控阵换能器要慢);预计该系统的未来迭代将使用更高的换能器中心频率,以获得更好的空间分辨率,并将优化电动舞台路径,以获得更高的帧频和更大的速度动态范围。潜在的非侵入性应用包括评估小型动物模型的浅层血管中的血液动力学以及聚合物中的流体动力学微流体2-D和3-D阵列(对农业,计算机和制药行业的应用和基础研究有影响)。

著录项

  • 作者

    Williams, Logan Dawn April.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.;Physics Acoustics.
  • 学位 M.S.
  • 年度 2008
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;机械、仪表工业;声学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号