首页> 外文学位 >Managing uncertainty in the single airport ground holding problem using scenario-based and scenario-free approaches.
【24h】

Managing uncertainty in the single airport ground holding problem using scenario-based and scenario-free approaches.

机译:使用基于方案和无方案的方法来管理单个机场地面保留问题中的不确定性。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this dissertation is to improve the ability of air traffic managers to handle uncertainty and incorporate probabilistic forecast information in ground delay programs (GDPs). In particular, we investigate ways to advance the support of decision-making under uncertainty in GDPs for a single destination airport. We explore methods to model the stochasticity in GDP operations and mechanisms that respond to conditions dynamically such that the overall system performance is optimized.; Recent developments in solving the single airport ground holding problem (SAGHP) use static or dynamic stochastic programs to manage uncertainty about how airport capacities will evolve. Both static and dynamic models involve the use of scenarios that depict different possible capacity evolutions. Dynamic models also require scenario trees featuring branch points where previously similar capacity profiles become distinct. In this dissertation, we present methodologies for generating and using scenarios and scenario trees from empirical data and examine the performance of scenario-based models in a real-world setting. We find that most U.S. airports have capacity profiles that can be classified into a small number of nominal scenarios, and for a number of airports these scenarios can be naturally combined into scenario trees. The delay costs yielded from using dynamic optimization are found to be consistently and considerably lower than that from static optimization. However, the costs incurred from applying scenario-based optimization, either static or dynamic, to these airports is considerably higher than what the "theoretical" optimization results suggest, because actual capacities vary around the nominal values assumed in the optimization, and because of uncertainty in navigating scenario trees that the idealized models ignore.; In light of the shortcomings of the scenario-based models, we develop a sequential decision model that is not limited by a small set of scenarios, which we termed as "scenario-free" model. The model is formulated as a dynamic program and the challenge lies in the computational load for solving large-scale problem instances, due to the "curse of dimensionality" of dynamic programming. We present several computational strategies to manage the complexity. We show that the computational strategies reduce the computation time significantly without much loss in optimality in several test cases. We also demonstrate the computational feasibility of the model for problems of realistic scale.; Finally, we compare the performance of the scenario-based and scenario-free models solving identical problems in a real-world setting. We show that the scenario-free model leads to lower average incurred delay cost and lower variation in incurred costs. Moreover, we find the scenario-free model yields solutions that contain more balanced distributions of ground and airborne delay. Though the magnitude of cost reduction was smaller than anticipated based on earlier results, the closeness of the expected and the incurred cost and the narrower spread of the incurred costs from using the scenario-free model make it a more informational and predictable approach.
机译:本文的目的是提高空中交通管理人员处理不确定性并将概率预报信息纳入地面延误计划(GDP)的能力。特别是,我们研究了在单个目的地机场GDP不确定的情况下提高决策支持能力的方法。我们探索了对GDP操作中的随机性进行建模的方法,以及对条件进行动态响应的机制,从而优化了整个系统的性能。解决单一机场地面保留问题(SAGHP)的最新进展是使用静态或动态随机程序来管理有关机场容量如何发展的不确定性。静态和动态模型都涉及描述不同容量可能演变的场景。动态模型还要求方案树具有分支点,以前相似的容量配置文件在这些分支点上变得不同。在本文中,我们提出了从经验数据中生成和使用情景和情景树的方法,并检验了基于情景的模型在现实环境中的性能。我们发现,大多数美国机场的容量配置文件可以分为少量的名义情景,而对于许多机场,这些情景可以自然地合并到情景树中。发现使用动态优化所产生的延迟成本始终稳定且大大低于静态优化所产生的延迟成本。但是,对这些机场应用基于场景的静态或动态优化所产生的成本大大高于“理论”优化结果所建议的成本,因为实际容量围绕优化假定的标称值变化在导航理想化模型忽略的方案树时;鉴于基于场景的模型的缺点,我们开发了一种顺序决策模型,该模型不受少数场景的限制,我们称其为“无场景”模型。该模型被公式化为一个动态程序,由于动态编程的“维数诅咒”,面临的挑战在于解决大规模问题实例的计算量。我们提出了几种计算策略来管理复杂性。我们表明,在几个测试案例中,该计算策略显着减少了计算时间,而在最优性上没有太多损失。我们还证明了该模型在实际规模问题上的计算可行性。最后,我们比较了基于场景和无场景模型在现实环境中解决相同问题的性能。我们表明,无情景模型导致较低的平均发生延迟成本和较低的发生成本变化。此外,我们发现无情景模型得出的解决方案包含地面和机载延迟的更均衡分布。尽管成本降低的幅度小于基于早期结果的预期,但使用无情景模型的预期成本与实际成本的接近程度和实际成本的较窄分布使其成为一种更具信息性和可预测性的方法。

著录项

  • 作者

    Liu, Pei-Chen.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Transportation.; Operations Research.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 综合运输;运筹学;
  • 关键词

  • 入库时间 2022-08-17 11:39:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号