首页> 外文学位 >Advances in gas and aerosol monitoring at active volcanoes.
【24h】

Advances in gas and aerosol monitoring at active volcanoes.

机译:活火山中气体和气溶胶监测的进展。

获取原文
获取原文并翻译 | 示例

摘要

To improve interpretation of volcanic SO2 flux data, it is necessary to quantify and understand reactions involving SO 2 in volcanic plumes. Uncertainties in the near-source plume chemistry can complicate interpretations of volcanic activity and hazards, petrology, global emission rates and climatic effects of emissions. The main objectives of this research are to quantify SO2 emission rates and calculate SO2 loss rates at volcanoes within different environments (e.g. low altitude-high humidity vs. high altitude-low humidity) using ground based remote sensing techniques. The work, divided in three main parts, uses new techniques to quantify SO2 decrease rates.; We conducted our measurements using mini-UV spectrometers, which are quickly replacing the COSPEC as the instrument of choice for SO2 measurements. In order to apply this technique, which has only been used in volcanology since 2001, we started by using a COSPEC to measure SO2 fluxes at five volcanoes in Guatemala and El Salvador (1999--2002). This work included extensive error analysis, for instrumental and non-instrumental errors, which can be applied to the analysis of SO2 data collected at the target volcanoes, using mini-UV spectrometers. We also described the contributions of these volcanoes, which are the most active in Guatemala and El Salvador, in the context of the global sulfur budget. This resulted in 6--12% of the global budget, which is high and shows that the global budget is probably underestimated.; In the second part we conducted SO2 measurements, using mini-UV spectrometers, of ash-free plumes in 2004 near the vent and at several distances downwind at Soufriere Hills volcano, Montserrat (SHV) and Lascar volcano, Chile, in order to quantify SO2 loss rates. These were chosen mainly because their plumes are emitted to different parts of the troposphere (planetary boundary layer and free troposphere), and they represent humid and dry atmospheres, respectively. At both volcanoes we conducted measurements for three to four days. Average SO2 loss rates of ∼10 -4 s-1 (e-folding time of ∼2.78 hours) were calculated at both volcanoes. However, those at SHV are more accurate and representative of the general case in Montserrat. Those at Lascar are subject to large errors due to uncertainties in plume geometry and effects of UV scattering; therefore the loss rates are probably very slow to negligible. An underestimate of 70--146% of the at source SO2 emission rate was calculated at SHV. This suggests that the global volcanic SO2 emission rate may be underestimated, as it is based on measurements typically taken downwind of volcanoes, by which time significant loss of SO2 may have taken place.; Finally, to complement the gas measurements at Lascar we also measured aerosol properties with a Microtops II sun photometer. The plume optical depths were extremely low (generally below 0.1), and the plumes were very optically thin. The plumes showed bimodal and trimodal distributions of particles, with a predominance of smaller particles (sulfates). We also observed that the particles in a plume measured downwind have larger effective radii, and their distributions showed an increase in the large particle mode (large water droplets and/or ice). We conclude that the size evolution in the plumes at Lascar is controlled mainly by adsorption/absorption processes close to the vent.
机译:为了改善对火山SO2通量数据的解释,有必要量化和了解火山羽中涉及SO 2的反应。近源羽流化学的不确定性可能会使对火山活动和危害,岩石学,全球排放率和排放的气候影响的解释复杂化。这项研究的主要目标是使用基于地面的遥感技术来量化不同环境(例如低海拔-高湿度与高海拔-低湿度)中火山的SO2排放率并计算SO2的损失率。这项工作分为三个主要部分,使用新技术来量化SO2的减少率。我们使用微型紫外线光谱仪进行了测量,该光谱仪正在迅速取代COSPEC,成为SO2测量的首选仪器。为了应用此技术(自2001年以来仅在火山学中使用),我们首先使用COSPEC测量危地马拉和萨尔瓦多(1999--2002)的五座火山的SO2通量。这项工作包括针对仪器和非仪器误差的大量误差分析,可以使用微型紫外光谱仪将其应用于目标火山收集的SO2数据分析。我们还描述了在全球硫预算的背景下,这些火山在危地马拉和萨尔瓦多最活跃的火山的贡献。这导致了全球预算的6--12%,这一数字很高,这表明全球预算可能被低估了。在第二部分中,我们使用微型紫外线光谱仪在2004年蒙特塞拉特岛Soufriere Hills火山和智利Lascar火山喷口附近以及顺风的几个距离处对无灰烟羽进行了无灰烟羽的SO2测量,以便对SO2进行定量损失率。选择它们的主要原因是它们的羽流散发到对流层的不同部分(行星边界层和自由对流层),它们分别代表潮湿和干燥的大气层。在这两个火山上,我们进行了三到四天的测量。在两个火山中,平均SO2损失率约为10 -4 s-1(电子折叠时间约为2.78小时)。但是,SHV的人员更准确,可以代表蒙特塞拉特的一般情况。由于烟羽几何形状的不确定性和紫外线散射的影响,在Lascar的公司会遭受较大的错误;因此,损失率可能非常缓慢,可以忽略不计。在SHV处计算出的源SO2排放率低估了70--146%。这表明,全球火山的SO2排放率可能被低估了,因为它是基于通常在火山顺风处进行的测量得出的,到那时,可能已经发生了SO2的大量流失。最后,为了补充Lascar的气体测量,我们还使用Microtops II太阳光度计测量了气溶胶特性。羽流的光学深度极低(通常低于0.1),羽流的光学极薄。羽流显示出颗粒的双峰和三峰分布,主要是较小的颗粒(硫酸盐)。我们还观察到,顺风测量的羽流中的粒子具有较大的有效半径,并且它们的分布显示出大粒子模式(大水滴和/或冰)的增加。我们得出的结论是,Lascar羽流中的大小演化主要受靠近通风口的吸附/吸收过程控制。

著录项

  • 作者单位

    Michigan Technological University.;

  • 授予单位 Michigan Technological University.;
  • 学科 Geology.; Atmospheric Sciences.; Remote Sensing.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 248 p.
  • 总页数 248
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地质学;遥感技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号