首页> 外文学位 >Rationalizing the polymorph selection process during the crystallization of model systems.
【24h】

Rationalizing the polymorph selection process during the crystallization of model systems.

机译:在模型系统结晶期间合理化多晶型物选择过程。

获取原文
获取原文并翻译 | 示例

摘要

Using molecular dynamics simulations, we study the crystallization of supercooled liquids in three simple systems. First, we study an atomic fluid modeled by the Lennard-Jones potential. We show that growth proceeds through the successive cross nucleations of the metastable hexagonal close-packed (hcp) polymorph on the stable face-centered (fcc) polymorph and of the stable fcc polymorph on the hcp metastable polymorph. Moreover we are able by varying the conditions of crystallization (i) to prevent cross nucleation and (ii) to control polymorphism e.g. by varying temperature at fixed pressure and by varying pressure at fixed supercooling, respectively. We form large crystallites either of the stable fcc form or of the metastable bcc form and even fine-tune the fractions of stable and metastable polymorphs in the crystallite. The second system modeled by the Yukawa (screened-Coulomb) potential allows us to understand when and how polymorph selection takes place during the crystallization of charge-stabilized colloidal suspensions. By modifying the value of the screening parameter lambda, we are able to invert the stability of the body-centered cubic (bcc) and face-centered cubic (fcc) polymorphs. We show that the crystallization mechanism strongly depends on the value of lambda. When bcc is the stable polymorph (lambda = 3), the crystallization mechanism is straightforward. Both kinetics and thermodynamics favor the formation of the bcc particles and polymorph selection takes place early during the nucleation step. When fcc is the stable polymorph (lambda = 10), the molecular mechanism is much more complex. First, kinetics favors the formation of bcc particles during the nucleation step. The growth of the post-critical nucleus proceeds through the successive cross nucleations of the stable fcc polymorph on the metastable hcp polymorph as well as of the hcp polymorph on the fcc polymorph. Finally, we simulate the entire crystallization process for a metal. We consider the example of Aluminum. We shed light on the molecular mechanisms underlying the nucleation and growth steps and find significant differences with those followed by simple fluids. First, Al nucleates into a random packing of the hcp and fcc phases. Bcc clusters, which usually form during the nucleation of simple fluids, are not observed during the crystallization of Aluminum. Second, the crystallites formed are strongly faceted. This is in sharp contrast with the ellipsoidal crystallites observed during the crystallization of simple fluids. We add that we did not find any icosahedral signature within the crystallite. The concentration in icosahedral atoms in the liquid was constant throughout the growth step, showing that the icosahedral structures do not play an active role in the crystallization process of Al.
机译:使用分子动力学模拟,我们研究了三个简单系统中过冷液体的结晶。首先,我们研究由Lennard-Jones势建模的原子流体。我们显示增长通过在稳定的面心(fcc)多晶型物上的亚稳态六角密堆积(hcp)多晶型物和hcp亚稳态多晶型物上的稳定fcc多晶型物的连续交叉成核而进行。此外,我们能够通过改变结晶条件来(i)防止交叉成核和(ii)控制多态性,例如。通过在固定压力下改变温度和在固定过冷条件下改变压力。我们形成稳定的fcc形式或亚稳bcc形式的大晶粒,甚至微调晶粒中稳定和亚稳多晶型物的比例。由Yukawa(屏蔽库仑)电势建模的第二个系统使我们能够了解在电荷稳定的胶体悬浮液结晶过程中何时以及如何进行多晶型物选择。通过修改筛选参数lambda的值,我们能够反转以体心立方(bcc)和以面心立方(fcc)多晶型物的稳定性。我们表明,结晶机理在很大程度上取决于λ的值。当bcc是稳定的多晶型物(lambda = 3)时,结晶机理很简单。动力学和热力学都有利于形成bcc颗粒,并且多晶型物的选择在成核步骤的早期进行。当fcc是稳定的多晶型物(λ= 10)时,分子机理要复杂得多。首先,动力学有利于在成核步骤中形成bcc颗粒。临界后核的生长通过亚稳态hcp多晶型物上的稳定fcc多晶型物以及fcc多晶型物上的hcp多晶型物的连续交叉成核而进行。最后,我们模拟了金属的整个结晶过程。我们以铝为例。我们阐明了成核和生长步骤背后的分子机制,并发现了与简单流体所遵循的分子机制之间的显着差异。首先,Al成核为hcp和fcc相的无规堆积。 Bcc团簇通常在简单流体的成核过程中形成,而在铝的结晶过程中未观察到。第二,形成的微晶是强切面的。这与简单流体结晶过程中观察到的椭圆形微晶形成鲜明对比。我们补充说,我们在微晶中未发现任何二十面体特征。在整个生长步骤中,液体中的二十面体原子浓度是恒定的,这表明二十面体结构在Al的结晶过程中没有发挥积极作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号