首页> 外文学位 >Nanotribological properties of nanostructured hard carbon thin films.
【24h】

Nanotribological properties of nanostructured hard carbon thin films.

机译:纳米结构硬碳薄膜的纳米摩擦学性质。

获取原文
获取原文并翻译 | 示例

摘要

Hard carbon thin films are important candidate materials to improve the tribological performance of mechanical components ranging from the macro- to the nanoscale. Extensive study at the macroscale has established their excellent tribomechanical properties, but little is known about their nanoscale properties. We investigated three carbon-based films: ultrananocrystalline diamond (UNCD), tetrahedral amorphous carbon (ta-C), and diamond-like carbon (DLC). We used near-edge X-ray absorption fine structure (NEXAFS) spectroscopy to determine the chemical composition and the nature of the surface bonds. We used atomic force microscopy (AFM) to measure the work of adhesion and frictional forces between diamond tips (microcrystalline and UNCD) and both UNCD and ta-C surfaces, and between fluorinated DLC (F-DLC) tips and both F-DLC and silicon-containing DLC (Si-DLC).;For UNCD, we were able to reach van der Waals's limit of adhesion for hydrocarbons (∼30 mJ/m2) and reduce nanoscale friction forces by terminating defective surfaces with hydrogen. This is particularly important for the underside of UNCD films, which we studied by etching away their underlying substrates. We found that this underside had a higher percentage of sp2 bonding and oxygen than the upper surface, but exposure to hydrogen plasma restored the sp3 character and improved the nanotribological properties.;We studied ta-C films annealed from 200°C - 1000°C, and found that thermal annealing increased the sp2 bonding percentage. Above 600°C, the conversion from sp3→sp2 bonding increased dramatically. When the as-deposited films were oxygen-free, we observed no change in the work of adhesion (which is low at ∼40 mJ/m 2) as a function of thermal annealing, but we did see a reduction in nano scale friction.;F-DLC and Si-DLC films were investigated before and after thermally annealing them at 300°C in air. The NEXAFS and AFM results demonstrated that Si-DLC is stable, both chemically and nanotribologically. The F-DLC film, however, showed an increase in C-F bonding, O=C-OH bonding, and friction. No significant change in the work of adhesion for either film was observed.;Overall, these results demonstrate that the composition and bonding state of the surface atoms of carbon-based films can have a significant impact on the tribological properties at the nanometer scale.
机译:硬碳薄膜是改善从宏观到纳米尺度的机械部件的摩擦学性能的重要候选材料。在宏观上的广泛研究已经建立了它们优异的摩擦力学性能,但是对它们的纳米级性能知之甚少。我们研究了三种碳基薄膜:超纳米晶金刚石(UNCD),四面体无定形碳(ta-C)和类金刚石碳(DLC)。我们使用近边缘X射线吸收精细结构(NEXAFS)光谱确定化学成分和表面键的性质。我们使用原子力显微镜(AFM)来测量金刚石针尖(微晶和UNCD)与UNCD和ta-C表面之间以及氟化DLC(F-DLC)针尖与F-DLC和F-DLC之间的粘附力和摩擦力含硅的DLC(Si-DLC)。对于UNCD,我们能够达到范德华对碳氢化合物的粘附极限(〜30 mJ / m2),并通过用氢终止有缺陷的表面来降低纳米级的摩擦力。这对于UNCD膜的底面尤为重要,我们通过蚀刻掉其下面的基材进行了研究。我们发现此底面的sp2键和氧百分比高于上表面,但暴露于氢等离子体可恢复sp3特性并改善纳米摩擦学性能。;我们研究了在200°C至1000°C退火的ta-C膜,并且发现热退火增加了sp2键合百分比。高于600°C时,sp3→sp2键合的转化率急剧增加。当沉积的薄膜不含氧时,我们没有观察到粘合功随热退火的变化(在约40 mJ / m 2时很低),但确实观察到纳米级摩擦的降低。 ;研究了F-DLC和Si-DLC薄膜在300°C的空气中进行热退火前后的情况。 NEXAFS和AFM结果表明,Si-DLC在化学和纳米摩擦学方面都是稳定的。然而,F-DLC膜显示出C-F键,O = C-OH键和摩擦的增加。总体而言,这些结果表明,碳基薄膜的表面原子的组成和键合状态可能会对纳米级的摩擦学性能产生重大影响。

著录项

  • 作者

    Grierson, David S.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Applied Mechanics.;Physics Condensed Matter.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:39:16

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号