首页> 外文学位 >Predicting mechanisms of arrhythmia in heart failure using high performance computing.
【24h】

Predicting mechanisms of arrhythmia in heart failure using high performance computing.

机译:使用高性能计算预测心力衰竭中的心律不齐的机制。

获取原文
获取原文并翻译 | 示例

摘要

Differences in electrophysiological properties of cardiac cells produce repolarization gradients across the transmural wall. Under pathological conditions, such as Heart Failure (HF) and Long QT Syndrome (LQTS), these gradients are amplified and can form the substrate for re-entry, arrhythmia and possible sudden cardiac death which remains a leading cause of death in the western world. It is therefore important to work towards a more complete understanding of the mechanisms of arrhythmia so that more effective diagnostic and therapeutic procedures can be developed. The work presented in this study describes computational approaches for developing cardiac models which can be used in conjunction with experiments to test hypotheses by which arrhythmias may arise in the heart. Particular emphasis is placed on the role of repolarization abnormalities in the generation of arrhythmias under conditions of HF.; There are two main components of our model: (a) a description of the detailed anatomical structure of the tissue; and (b) experimentally-derived electrophysiological models of ion currents. The computational domain consists of millions of mesh points each representing a cardiac myocyte. Current fluxes within each myocyte were modeled using coupled non-linear ordinary differential equations (ODEs). We adopted a stiff symmetric operator-splitting scheme to eliminate the need to use extremely small integration time steps, which would otherwise be required to satisfy the stiffness of the ODE system. In the scheme we adopted, the reaction term was solved using a stiff integration method, and the diffusion term was solved with a second order Runge-Kutta method. This scheme increased computational speed by almost ten fold compared to a simple numerical method such as the forward Euler method. High Performance Computing (HPC) was employed to cut down simulation runtime. The parallel algorithm developed was highly scalable to the problem size as well as the number of processors, and could be ported to other parallel machines.; The models were used to examine HF-related functional changes in electrical conduction and action potential duration (APD) gradients. Modeling results predict that the interplay between HF-induced electrophysiological remodeling of cell properties and reduced conductivity significantly increases repolarization gradients and APD dispersion (APDD) both of which have been shown to increase the risk of arrhythmias. These models can serve as computational tools to study the mechanisms underlying cardiac arrhythmias.
机译:心肌细胞电生理特性的差异会在跨壁壁上产生复极化梯度。在病理条件下,例如心力衰竭(HF)和长QT综合征(LQTS),这些梯度会被放大并形成再入,心律不齐和可能的心源性猝死的底物,这仍然是西方世界死亡的主要原因。因此,重要的是要对心律不齐的机制有更全面的了解,以便可以开发出更有效的诊断和治疗程序。这项研究中介绍的工作描述了开发心脏模型的计算方法,该方法可与实验结合使用,以检验可能在心脏中出现心律不齐的假设。特别强调在HF条件下复极化异常在心律不齐的产生中的作用。我们的模型有两个主要组成部分:(a)对组织详细解剖结构的描述; (b)实验得出的离子电流电生理模型。计算域由数百万个网格点组成,每个网格点代表一个心肌细胞。使用耦合的非线性常微分方程(ODE)对每个心肌细胞中的电流通量建模。我们采用了一种严格的对称算子分解方案,以消除使用极小的积分时间步长的需求,否则,这将需要满足ODE系统的刚度。在我们采用的方案中,反应项使用刚性积分法求解,扩散项使用二阶Runge-Kutta方法求解。与简单的数值方法(例如正向Euler方法)相比,该方案将计算速度提高了近十倍。高性能计算(HPC)用于减少仿真运行时间。所开发的并行算法可高度扩展到问题大小以及处理器数量,并可移植到其他并行计算机上。该模型用于检查电导率和动作电位持续时间(APD)梯度中与HF相关的功能变化。建模结果预测,HF诱导的细胞特性电生理重塑与电导率降低之间的相互作用会显着增加复极化梯度和APD分散度(APDD),两者均已显示会增加心律不齐的风险。这些模型可以用作研究心律不齐的潜在机制的计算工具。

著录项

  • 作者

    Almas, Tabish.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Engineering Biomedical.; Engineering Electronics and Electrical.; Computer Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 207 p.
  • 总页数 207
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号