首页> 外文学位 >Development of new bioanalysis techniques based on confocal fluorescence spectroscopy and nanotechnology for nucleic acid research.
【24h】

Development of new bioanalysis techniques based on confocal fluorescence spectroscopy and nanotechnology for nucleic acid research.

机译:基于共聚焦荧光光谱法和纳米技术的新型生物分析技术的开发,用于核酸研究。

获取原文
获取原文并翻译 | 示例

摘要

Although we are in the post-genomic era, we still face many unsolved questions in functional genomics and proteomics. One major challenge is due to the fact that we lack research tools to elucidate the sophisticated genetic processing and cellular signaling mechanisms that are often obscured by cellular heterogeneity and the stochastic nature of molecular processes. Among the tools that are currently being developed to facilitate biomedical studies, it is increasingly evident that probes in the nanometer size-scale and tools with single-molecule sensitivity are necessary to characterize this inherent variability in biological systems. For modern analytical chemistry, an important goal is thus to develop highly sensitive and low-volume molecular analysis systems that enable the quantification of low-copy number biomolecules in minute amount of samples. This dissertation presents my work in combining three innovative technologies including nanomaterial-based probes, microfluidics and single-molecule detection in pursuing this analytical goal.; The analytical strategies and tools demonstrated in this dissertation primarily focus on the aspect of nucleic acid research, which is of great importance in disease diagnostics, disease treatment, as well as understanding the fundamental cell regulation mechanisms. Two analytical tasks often required in nucleic acid study are the identification and quantification of particular nucleic acids or point mutations that have critical biological implications, and the characterization of binding energy landscapes between DNA-binding proteins and DNA under various chemical conditions that directly link to the development of new therapeutic methods for treating certain diseases. To address the requirements for nucleic acid sensing, novel quantum-dot-based nanoprobes for specific nucleic acid detection and mutational analysis of oncogenes were demonstrated (Nucleic Acids Research 2006, 34(5), e35; Nanomedicinc: Nanotechnology, Biology, and Medicine 2005, 1(2), 115-121; and Natural Materials 2005, 4(11), 826-831; in collaboration with researchers in the Department of Pathology at Johns Hopkins). The fascinating optical properties of quantum dots enabled the development of nanoprobes with ultrahigh sensitivity and detection specificity in a homogeneous, separation-free detection formal. To facilitate the study of the binding of the transcription factor Sp1 to its DNA cognate sites (GC box) under the influence of the chemotherapeutic agent doxorubicin, a microfluidic titration chip was designed and fabricated to interface with a confocal fluorescence technique, the fluorescence correlation spectroscopy, to determine the IC50 (the concentration required for 50% inhibition) of the drug (Nucleic Acids Research 2006, 34(21). e144; in collaboration with researchers in the Department of Biology at Johns Hopkins). The merger of fluorescence fluctuation analysis techniques that have single-molecule sensitivity and microfluidics targets the needs for drug discovery in the pharmaceutical industry, particularly in the aspect of assay miniaturization.; While working with fluorescence fluctuation spectroscopy, I discovered that when labeled on a DNA probe, the commonly used cyanine dye Cy5, acquires an intriguing fast-blinking phenomenon (fluorescence intermittency on the order of microseconds) that can be "tuned" upon probe-target hybridization. The tunable blinking kinetics were then used as an indicator in differentiating DNA targets with single-nucleotide differences, as a proof of concept for application of this blinking phenomenon in bioanalysis of (manuscript accepted by Biophysical Journal lot publication). This finding may open the door to a whole new type of fluorescence-based detection technique that is not dependent on fluorescence intensity, lifetime, anisotropy, or spectral properties, but on the rate of the fluorophore being switched "on" and "off".; The major contribution of this dissertation is tw
机译:尽管我们处于后基因组时代,但在功能基因组学和蛋白质组学方面,我们仍然面临许多未解决的问题。一个主要的挑战是由于以下事实:我们缺乏研究工具来阐明复杂的遗传加工和细胞信号传导机制,而这些机制通常被细胞异质性和分子过程的随机性所掩盖。在目前为促进生物医学研究而开发的工具中,越来越明显的是,纳米级规模的探针和具有单分子敏感性的工具对于表征生物系统中这种固有的变异性是必需的。因此,对于现代分析化学来说,一个重要的目标是开发高度灵敏和小批量的分子分析系统,以对微量样品中的低拷贝数生物分子进行定量。为了实现这一分析目标,本文提出了我在结合三种创新技术(包括基于纳米材料的探针,微流体技术和单分子检测)方面的工作。本文所展示的分析策略和工具主要集中在核酸研究方面,这在疾病诊断,疾病治疗以及了解基本的细胞调节机制中具有重要意义。核酸研究中经常需要进行的两个分析任务是:鉴定和定量具有关键生物学意义的特定核酸或点突变;以及表征在各种化学条件下直接结合于核酸的DNA结合蛋白和DNA之间的结合能态势。开发治疗某些疾病的新治疗方法。为了满足核酸感测的要求,展示了用于特定核酸检测和致癌基因突变分析的新型基于量子点的纳米探针(Nucleic Acids Research 2006,34(5),e35; Nanomedicinc:Nanotechnology,Biology,and Medicine 2005) ,1(2),115-121;和自然材料2005,4(11),826-831;与约翰·霍普金斯大学病理学系的研究人员合作)。量子点的引人入胜的光学特性使得能够以均一的,无分离的检测形式开发具有超高灵敏度和检测特异性的纳米探针。为了便于研究在化学治疗剂阿霉素的影响下转录因子Sp1与其DNA同源位点(GC框)的结合,设计并制造了一种微流体滴定芯片,以与共聚焦荧光技术,荧光相关光谱法对接,以确定药物的IC50(抑制50%所需的浓度)(Nucleic Acids Research 2006,34(21)。e144;与约翰霍普金斯大学生物学系的研究人员合作)。具有单分子敏感性和微流体学的荧光波动分析技术的结合,满足了制药行业对药物发现的需求,特别是在测定小型化方面。在使用荧光波动光谱法时,我发现当在DNA探针上进行标记时,常用的花青染料Cy5会产生一种引人入胜的快速闪烁现象(荧光间断时间以微秒为单位),可以根据探针目标“调整”杂交。然后将可调节的眨眼动力学用作区分具有单核苷酸差异的DNA靶标的指标,作为在生物分析中应用这种眨眼现象的概念证明(手稿被Biophysical Journal批注接受)。这一发现可能为一种全新的基于荧光的检测技术打开大门,该技术不依赖于荧光强度,寿命,各向异性或光谱特性,而是取决于荧光团“打开”和“关闭”的速率。 ;本文的主要贡献是

著录项

  • 作者

    Yeh, Hsin-Chih (Tim).;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Biology Molecular.; Engineering Biomedical.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:39:13

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号