首页> 外文学位 >Actively learning specific function properties with applications to statistical inference.
【24h】

Actively learning specific function properties with applications to statistical inference.

机译:主动学习特定的函数属性,并将其应用于统计推断。

获取原文
获取原文并翻译 | 示例

摘要

Active learning techniques have previously been shown to be extremely effective for learning a target function over an entire parameter space based on a limited set of observations. However, in many cases, only a specific property of the target function needs to be learned. For instance, when discovering the boundary of a region---such as the locations in which the wireless network strength is above some operable level,---we are interested in learning only the level-set of the target function. While techniques that learn the entire target function over the parameter space can be used to detection specific properties of the target function (e.g. level-sets), methods that learn only the required properties can be significantly more efficient, especially as the dimensionality of the parameter space increases.; These active learning algorithms have a natural application in many statistical inference techniques. For example, given a set of data and a physical model of the data, which is a function of several variables, a scientist is often interested in determining the ranges of the variables which are statistically supported by the data. We show that many frequentist statistical inference techniques can be reduced to a level-set detection problem or similar search of a property of the target function, and hence benefit from active learning algorithms which target specific properties. Using these active learning algorithms significantly decreases the number of experiments required to accurately detect the boundaries of the desired 1---alpha confidence regions. Moreover, since computing the model of the data given the input parameters may be expensive (either computationally, or monetarily), such algorithms can facilitate analyses that were previously infeasible.; We demonstrate the use of several statistical inference techniques combined with active learning algorithms on several cosmological data sets. The data sets vary in the dimensionality of the input parameters from two to eight. We show that naive algorithms, such as random sampling or grid based methods, are computationally infeasible for the higher dimensional data sets. However, our active learning techniques can efficiently detect the desired 1---alpha confidence regions. Moreover, the use of frequentist inference techniques allows us to easily perform additional inquiries, such as hypothetical restrictions on the parameters and joint analyses of all the cosmological data sets, with only a small number of additional experiments.
机译:以前已经显示出主动学习技术对于基于有限的一组观察在整个参数空间上学习目标函数非常有效。但是,在许多情况下,仅需要学习目标函数的特定属性。例如,当发现某个区域的边界时(例如无线网络强度高于某个可操作级别的位置),我们只对目标功能的级别集感兴趣。虽然可以使用在参数空间上学习整个目标函数的技术来检测目标函数的特定属性(例如,级别集),但是仅学习所需属性的方法可以显着提高效率,尤其是在参数的维数方面空间增加。这些主动学习算法在许多统计推断技术中都有自然的应用。例如,给定一组数据和数据的物理模型,该模型是几个变量的函数,科学家通常对确定数据统计上支持的变量范围感兴趣。我们表明,许多频繁出现的统计推断技术可以简化为一个水平集检测问题或对目标函数的属性进行类似的搜索,因此可以受益于针对特定属性的主动学习算法。使用这些主动学习算法会大大减少准确检测所需的1-α置信区域边界所需的实验次数。而且,由于在给定输入参数的情况下计算数据模型可能是昂贵的(无论是在计算上还是在货币上),因此这种算法可以促进以前不可行的分析。我们展示了在几种宇宙学数据集上结合几种主动学习算法的统计推断技术的使用。数据集的输入参数维数从2到8不等。我们表明,天真的算法(例如随机抽样或基于网格的方法)对于高维数据集在计算上不可行。但是,我们的主动学习技术可以有效地检测所需的1--alpha置信区域。此外,使用频繁推断技术使我们能够轻松执行其他查询,例如对参数的假设限制以及所有宇宙学数据集的联合分析,而只需进行少量额外的实验即可。

著录项

  • 作者

    Bryan, Brent.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Statistics.; Computer Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 统计学 ; 自动化技术、计算机技术 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号