首页> 外文学位 >Electric field manipulation of polymer nanocomposites: Processing and investigation of their physical characteristics.
【24h】

Electric field manipulation of polymer nanocomposites: Processing and investigation of their physical characteristics.

机译:聚合物纳米复合材料的电场操纵:物理特性的处理和研究。

获取原文
获取原文并翻译 | 示例

摘要

Research in nanoparticle-reinforced composites is predicated by the promise for exceptional properties. However, to date the performance of nanocomposites has not reached its potential due to processing challenges such as inadequate dispersion and patterning of nanoparticles, and poor bonding and weak interfaces. The main objective of this dissertation is to improve the physical properties of polymer nanocomposites at low nanoparticle loading. The first step towards improving the physical properties is to achieve a good homogenous dispersion of carbon nanofibers (CNFs) and single wall carbon nanotubes (SWNTs) in the polymer matrix; the second step is to manipulate the well-dispersed CNFs and SWNTs in polymers by using an AC electric field.;Different techniques are explored to achieve homogenous dispersion of CNFs and SWNTs in three polymer matrices (epoxy, polyimide and acrylate) without detrimentally affecting the nanoparticle morphology. The three main factors that influence CNF and SWNT dispersion are: use of solvent, sonication time, and type of mixing. Once a dispersion procedure is optimized for each polymer system, the study moves to the next step. Low concentrations of well dispersed CNFs and SWNTs are successfully manipulated by means of an AC electric field in acrylate and epoxy polymer solutions.;To monitor the change in microstructure, alignment is observed under an optical microscope, which identifies a two-step process: rotation of CNFs and SWNTs in the direction of electric field and chaining of CNFs and SWNTs. In the final step, the aligned microstructure is preserved by curing the polymer medium, either thermally (epoxy) or chemically (acrylate). The conductivity and dielectric constant in the parallel and perpendicular direction increased with increase in alignment frequency. The values in the parallel direction are greater than the values in the perpendicular direction and anisotropy in conductivity increased with increase in AC electric field frequency. There is an 11 orders magnitude increase in electrical conductivity of 0.1 wt% CNF-epoxy nanocomposite that is aligned at 100 V/mm and 1 kHz frequency for 90 minutes. Electric field magnitude, frequency and time are tuned to improve and achieve desired physical properties at very low nanoparticle loadings.
机译:纳米颗粒增强复合材料的研究以其优异性能的前景为基础。然而,迄今为止,由于诸如纳米颗粒的分散和图案化不充分,粘结性差和界面弱的加工挑战,纳米复合材料的性能尚未达到其潜力。本文的主要目的是在低纳米颗粒负载下改善聚合物纳米复合材料的物理性能。改善物理性能的第一步是在聚合物基质中实现碳纳米纤维(CNF)和单壁碳纳米管(SWNT)的良好均匀分散。第二步是通过使用交流电场来控制聚合物中分散良好的CNF和SWNT。探索了各种技术,以实现CNF和SWNT在三种聚合物基质(环氧树脂,聚酰亚胺和丙烯酸酯)中的均匀分散,而不会不利地影响纳米颗粒形态。影响CNF和SWNT分散的三个主要因素是:溶剂的使用,超声处理时间和混合类型。一旦为每种聚合物系统优化了分散程序,研究便进入下一步。通过丙烯酸酯和环氧聚合物溶液中的交流电场,可以成功控制低浓度的分散良好的CNF和SWNT。为了监测微观结构的变化,在光学显微镜下观察到对准,该过程确定了两个步骤:旋转CNF和SWNT在电场方向上的分布以及CNF和SWNT的链接。在最后一步中,通过热固化(环氧树脂)或化学固化(丙烯酸酯)聚合物介质来保留对齐的微结构。平行和垂直方向的电导率和介电常数随对准频率的增加而增加。平行方向上的值大于垂直方向上的值,并且电导率的各向异性随着交流电场频率的增加而增加。 0.1 wt%CNF-环氧树脂纳米复合材料的电导率增加了11个数量级,并以100 V / mm和1 kHz的频率排列90分钟。调整电场强度,频率和时间以在非常低的纳米颗粒负载下改善并实现所需的物理性能。

著录项

  • 作者

    Banda, Sumanth.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号