首页> 外文OA文献 >Electric field manipulation of polymer nanocomposites: processing and investigation of their physical characteristics
【2h】

Electric field manipulation of polymer nanocomposites: processing and investigation of their physical characteristics

机译:聚合物纳米复合材料的电场操纵:其物理特性的处理和研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Research in nanoparticle-reinforced composites is predicated by the promise forexceptional properties. However, to date the performance of nanocomposites has notreached its potential due to processing challenges such as inadequate dispersion andpatterning of nanoparticles, and poor bonding and weak interfaces. The main objectiveof this dissertation is to improve the physical properties of polymer nanocomposites atlow nanoparticle loading. The first step towards improving the physical properties is toachieve a good homogenous dispersion of carbon nanofibers (CNFs) and single wallcarbon nanotubes (SWNTs) in the polymer matrix; the second step is to manipulate thewell-dispersed CNFs and SWNTs in polymers by using an AC electric field.Different techniques are explored to achieve homogenous dispersion of CNFs andSWNTs in three polymer matrices (epoxy, polyimide and acrylate) without detrimentallyaffecting the nanoparticle morphology. The three main factors that influence CNF andSWNT dispersion are: use of solvent, sonication time, and type of mixing. Once a dispersion procedure is optimized for each polymer system, the study moves to the nextstep. Low concentrations of well dispersed CNFs and SWNTs are successfullymanipulated by means of an AC electric field in acrylate and epoxy polymer solutions.To monitor the change in microstructure, alignment is observed under an opticalmicroscope, which identifies a two-step process: rotation of CNFs and SWNTs in thedirection of electric field and chaining of CNFs and SWNTs. In the final step, thealigned microstructure is preserved by curing the polymer medium, either thermally(epoxy) or chemically (acrylate). The conductivity and dielectric constant in the paralleland perpendicular direction increased with increase in alignment frequency. The valuesin the parallel direction are greater than the values in the perpendicular direction andanisotropy in conductivity increased with increase in AC electric field frequency. Thereis an 11 orders magnitude increase in electrical conductivity of 0.1 wt% CNF-epoxynanocomposite that is aligned at 100 V/mm and 1 kHz frequency for 90 minutes.Electric field magnitude, frequency and time are tuned to improve and achieve desiredphysical properties at very low nanoparticle loadings.
机译:纳米颗粒增强复合材料的研究以其优异的性能为前提。然而,迄今为止,由于诸如纳米颗粒的分散和图案化不充分,粘结性差和界面弱的加工挑战,纳米复合材料的性能尚未发挥其潜力。本文的主要目的是在低纳米颗粒负载下改善聚合物纳米复合材料的物理性能。改善物理性能的第一步是在聚合物基质中实现碳纳米纤维(CNF)和单壁碳纳米管(SWNT)的良好均匀分散。第二步是通过使用交流电场来控制聚合物中分散良好的CNF和SWNT。探索了各种技术来实现CNF和SWNT在三种聚合物基质(环氧树脂,聚酰亚胺和丙烯酸酯)中的均匀分散,而不会不利地影响纳米粒子的形态。影响CNF和SWNT分散的三个主要因素是:溶剂的使用,超声处理时间和混合类型。一旦为每种聚合物系统优化了分散程序,研究便进入下一步。通过在丙烯酸酯和环氧聚合物溶液中的交流电场成功控制了低浓度的分散良好的CNF和SWNT。为了监测微观结构的变化,在光学显微镜下观察到对准,该过程分为两步过程:CNF的旋转和电场方向上的单壁碳纳米管和CNF和单壁碳纳米管的链接。在最后的步骤中,通过固化聚合物介质(热(环氧树脂)或化学(丙烯酸酯))来保留对齐的微观结构。平行和垂直方向的电导率和介电常数随对准频率的增加而增加。平行方向的值大于垂直方向的值,并且电导率的各向异性随着AC电场频率的增加而增加。 0.1 wt%CNF-环氧纳米复合材料的电导率增加11个数量级,在100 V / mm和1 kHz频率下对准90分钟,调整电场强度,频率和时间以在非常低的温度下改善并实现所需的物理性能纳米颗粒负载。

著录项

  • 作者

    Banda Sumanth;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号