首页> 外文学位 >Load and resistance factor design for integral abutment bridges .
【24h】

Load and resistance factor design for integral abutment bridges .

机译:整体式桥台的荷载和阻力系数设计。

获取原文
获取原文并翻译 | 示例

摘要

A prestressed concrete girder integral abutment bridge (IAB) requires a new load combination due to inherent uncertainties in loads and resistances and the significant inelastic and hysteretic behavior over bridge life. The present study presents development of simplified numerical modeling methodologies, development of nominal IAB response prediction models through an extensive parametric study, and establishment of IAB response statistics using Monte Carlo simulation. Finally, new load combinations in a load and resistance factor design (LRFD) format have been developed using reliability analyses.;For a robust, long-term simulation and numerical probabilistic study, a simplified numerical modeling methodology has been developed based on field monitoring results of four IABs. The numerical model includes temperature variation, temperature gradient, time-dependent loads, soil-structure interaction, and plastic behavior of the backwall/abutment construction joint. The four field tested IABs were modeled to validate the methodology. The proposed numerical model provides accurate, long-term prediction of IAB behavior and response.;IAB response prediction models have been developed using a parametric study. Current design specifications and guides do not provide clearly defined analysis methods, therefore, there is a need for easily implemented preliminary analysis methods. Based on the calibrated, nonlinear, 2D numerical modeling methodology, a parametric study of 243 cases was performed to obtain 75-year bridge response. The parametric study considered five parameters: (1) thermal expansion coefficient; (2) bridge length; (3) backfill height; (4) backfill stiffness; and (5) pile soil stiffness. The parametric study revealed that the thermal expansion coefficient, bridge length and pile soil stiffness significantly influence IAB response as measured by: (1) bridge axial force; (2) bridge bending moment at mid-span of the exterior span; (3) bridge bending moment at the abutment; (4) pile lateral force at pile head; (5) pile moment at pile head; (6) pile head/abutment displacement; and (7) abutment displacement at the centroid of a superstructure. The influence of backfill height and backfill stiffness are not significant relatively. The study results provide practical, preliminary estimates of bridge response and ranges for preliminary IAB design and analysis.;In order to establish IAB response statistics, Monte Carlo simulation has been performed based on the 2D numerical modeling methodology. Based on the established thermal load and resistance variable statistics, this study developed probabilistic numerical models and established IAB response statistics. Considered input variables to deal with uncertainties are resistance and load variables. IAB response statistics were established: (1) bridge axial force; (2) bridge bending moment; (3) pile lateral force; (4) pile moment; (5) pile head/abutment displacement; (6) compressive stress at the top fiber at the mid-span of the exterior span; and (7) tensile stress at the bottom fiber at the mid-span of the exterior span. IAB response statistics provide the basis for a reliability-based design. Reliability analyses were performed to develop new load combinations for IABs based on the developed IAB response prediction models and established statistics.
机译:由于荷载和阻力固有的不确定性以及桥梁使用寿命内明显的非弹性和滞后特性,预应力混凝土梁整体式桥墩(IAB)需要新的荷载组合。本研究介绍了简化的数值建模方法的开发,通过广泛的参数研究开发的标称IAB反应预测模型以及使用蒙特卡洛模拟方法建立的IAB反应统计数据。最后,通过可靠性分析开发了载荷和阻力因子设计(LRFD)格式的新载荷组合;;为了进行可靠的长期仿真和数值概率研究,基于现场监测结果开发了简化的数值建模方法四个IAB。数值模型包括温度变化,温度梯度,随时间变化的载荷,土-结构相互作用以及后墙/基台施工缝的塑性行为。对四个经过现场测试的IAB进行建模以验证该方法。提出的数值模型提供了对IAB行为和响应的准确,长期的预测。; IAB响应预测模型是使用参数研究开发的。当前的设计规范和指南没有提供明确定义的分析方法,因此,需要易于实施的初步分析方法。基于校准的非线性二维数值建模方法,对243个案例进行了参数研究,以获得75年的桥梁响应。该参数研究考虑了五个参数:(1)热膨胀系数; (2)桥长; (3)回填高度; (4)回填刚度; (5)桩土刚度。参数研究表明,热膨胀系数,桥梁长度和桩土刚度显着影响IAB的响应,其测量方法如下:(1)桥梁轴向力; (2)跨度中跨处的桥梁弯矩; (3)桥台处的弯矩; (4)桩头处的侧向力; (5)桩头处的桩矩; (6)桩头/桥台位移; (7)上部结构质心处的基台位移。回填高度和回填刚度的影响相对不明显。研究结果为IAB的初步设计和分析提供了实用的桥梁响应和范围的初步估计。为了建立IAB的响应统计数据,基于二维数值建模方法进行了蒙特卡洛模拟。基于已建立的热负荷和电阻变量统计数据,本研究建立了概率数值模型并建立了IAB响应统计数据。用来处理不确定性的输入变量是电阻和负载变量。建立了IAB响应统计数据:(1)桥梁轴向力; (2)桥梁弯矩; (3)桩的侧向力; (4)桩矩; (5)桩头/桥台位移; (6)在外跨中跨的顶部纤维上的压缩应力; (7)在外部跨度的中跨处的底部纤维处的拉伸应力。 IAB响应统计信息为基于可靠性的设计提供了基础。基于已开发的IAB响应预测模型和已建立的统计信息,进行了可靠性分析以开发IAB的新负载组合。

著录项

  • 作者

    Kim, Woo Seok.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 274 p.
  • 总页数 274
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号