首页> 外文学位 >Solution phase synthesis and characterization of III-V, II-VI and cadmium selenium telluride semiconductor nanowires.
【24h】

Solution phase synthesis and characterization of III-V, II-VI and cadmium selenium telluride semiconductor nanowires.

机译:III-V,II-VI和碲化镉硒半导体纳米线的溶液相合成与表征。

获取原文
获取原文并翻译 | 示例

摘要

There are many advantages to the solution phase synthesis of semiconductor nanowires, the most notable of which are the ease of scalability and the production of nanowires in higher yields than those typically obtained in chemical vapor deposition (CVD) based processes. The solution phase synthesis of high quality, high aspect ratio (>100) narrow diameter semiconductor nanowires depends sensitively on three parameters: the diameter of the nanocrystals utilized to promote (seed) nanowire growth, molecular precursor decomposition kinetics and the choice of solvent in which the nanowires are grown.;Bismuth is a low melting point (270 °C) semimetal and thus an ideal candidate for the solution-liquid-solid (SLS) growth of nanowires. A bismuth nanocrystal synthesis was developed that affords nanocrystals with average diameters from 4 -- 20 nm. The nanocrystal diameter is controlled by varying the capping ligand (TOPO) to bismuth molar ratio. The synthesis of Au2Bi nanocrystals was also studied as it also affords small diameter (∼ 2 nm) nanocrystals that are suitable for SLS nanowire growth.;Molecular precursor decomposition kinetics can have a significant impact on nanowire yield and quality. Precursors that decompose too quickly can produce relatively large diameter nanowires, while precursors that decompose too slowly can produce nanowires with a highly tortuous morphology as a result of a high density of crystallographic defects. The choice of molecular precursor for the synthesis of III-V and II-VI nanowires was investigated.;The solvent in which nanowires are grown can also have a significant effect on nanowire yield, quality and morphology. Coordinating solvents such as alkylphosphine oxides and alkylamines can interact with the atoms, or atomic complexes, that constitute nanowires and thus mediate the nanowire growth rate. In some instances, for example InAs nanowires grown in TOPO, this interaction can completely quench nanowire growth. This solvent effect has been investigated for the growth of III-V and II-VI nanowires. Solvents can also affect nanowire morphology. Branched ZnSe nanowires, i.e. hybrid nanostructures in which ZnSe nanorods grow epitaxially from the surface of ZnSe nanowires, are synthesized in trioctylamine whereas TOPO suppresses this branched growth.;Finally, a mechanism which allows for the synthesis of narrow diameter nanowires seeded by much larger diameter nanocrystals is investigated. Bismuth nanocrystals with an average diameter of ∼ 20 nm are utilized to promote the growth of narrow diameter (∼ 6 nm) CdSe.08Te.92 nanowires.
机译:半导体纳米线的固溶相合成具有许多优点,其中最显着的是与基于化学气相沉积(CVD)的方法相比,易于扩展和以更高的产率生产纳米线。高质量,高长宽比(> 100)的窄直径半导体纳米线的固溶相合成敏感地取决于三个参数:用于促进(种子)纳米线生长的纳米晶体的直径,分子前体分解动力学以及在其中选择溶剂的方式铋是一种低熔点(270°C)的半金属,因此是纳米线溶液-液-固(SLS)生长的理想候选材料。铋纳米晶体的合成得到了发展,提供了平均直径为4-20 nm的纳米晶体。通过改变封端配体(TOPO)与铋的摩尔比来控制纳米晶体的直径。还研究了Au2Bi纳米晶体的合成,因为它还提供了适合SLS纳米线生长的小直径(〜2 nm)纳米晶体。;分子前体的分解动力学可以对纳米线的产率和质量产生重大影响。分解速度过快的前体会产生相对较大直径的纳米线,而分解速度太慢的前体会由于高密度的晶体缺陷而产生具有高度曲折形态的纳米线。研究了用于合成III-V和II-VI纳米线的分子前体的选择。;生长纳米线的溶剂也可能对纳米线的产率,质量和形态产生重大影响。配位溶剂(例如烷基膦氧化物和烷基胺)可以与构成纳米线的原子或原子配合物相互作用,从而介导纳米线的生长速率。在某些情况下,例如在TOPO中生长的InAs纳米线,这种相互作用可以完全抑制纳米线的生长。已经针对III-V和II-VI纳米线的生长研究了这种溶剂效应。溶剂也会影响纳米线的形态。支化的ZnSe纳米线,即杂化纳米结构,其中ZnSe纳米棒从ZnSe纳米线的表面外延生长,是在三辛胺中合成的,而TOPO抑制了这种支化的增长。最后,一种机制允许合成直径更大的窄直径纳米线。研究了纳米晶体。平均直径约20 nm的铋纳米晶体被用于促进CdSe.08Te.92纳米线的直径狭窄(约6 nm)的生长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号