首页> 外文学位 >Physically-Adaptive Computing via Introspection and Self-Optimization in Reconfigurable Systems.
【24h】

Physically-Adaptive Computing via Introspection and Self-Optimization in Reconfigurable Systems.

机译:可重构系统中通过自省和自我优化实现的物理自适应计算。

获取原文
获取原文并翻译 | 示例

摘要

Digital electronic systems typically must compute precise and deterministic results, but in principle have flexibility in how they compute. Despite the potential flexibility, the overriding paradigm for more than 50 years has been based on fixed, non-adaptive integrated circuits. This one-size-fits-all approach is rapidly losing effectiveness now that technology is advancing into the nanoscale. Physical variation and uncertainty in component behavior are emerging as fundamental constraints and leading to increasingly sub-optimal fault rates, power consumption, chip costs, and lifetimes. This dissertation proposes methods of physically-adaptive computing (PAC), in which reconfigurable electronic systems sense and learn their own physical parameters and adapt with fine granularity in the field, leading to higher reliability and efficiency.;We formulate the PAC problem and provide a conceptual framework built around two major themes: introspection and self-optimization. We investigate how systems can efficiently acquire useful information about their physical state and related parameters, and how systems can feasibly re-implement their designs on-the-fly using the information learned. We study the role not only of self-adaptation---where the above two tasks are performed by an adaptive system itself---but also of assisted adaptation using a remote server or peer.;We introduce low-cost methods for sensing regional variations in a system, including a flexible, ultra-compact sensor that can be embedded in an application and implemented on field-programmable gate arrays (FPGAs). An array of such sensors, with only 1% total overhead, can be employed to gain useful information about circuit delays, voltage noise, and even leakage variations. We present complementary methods of regional self-optimization, such as finding a design alternative that best fits a given system region.;We propose a novel approach to characterizing local, uncorrelated variations. Through in-system emulation of noise, previously hidden variations in transient fault susceptibility are uncovered. Correspondingly, we demonstrate practical methods of self-optimization, such as local re-placement, informed by the introspection data. Forms of physically-adaptive computing are strongly needed in areas such as communications infrastructure, data centers, and space systems. This dissertation contributes practical methods for improving PAC costs and benefits, and promotes a vision of resourceful, dependable digital systems at unimaginably-fine physical scales.
机译:数字电子系统通常必须计算精确的确定性结果,但原则上在计算方式上具有灵活性。尽管具有潜在的灵活性,但50多年来的主要范例都是基于固定的非自适应集成电路。由于技术正在向纳米级发展,因此这种一刀切的方法正在迅速失去有效性。物理变化和组件行为的不确定性正在成为基本约束,并导致越来越多的次优故障率,功耗,芯片成本和使用寿命。本文提出了一种物理自适应计算(PAC)方法,其中可重构电子系统感知并学习自己的物理参数,并在现场以细粒度进行自适应,从而提高了可靠性和效率。概念框架围绕两个主要主题构建:内省和自我优化。我们研究了系统如何有效地获取有关其物理状态和相关参数的有用信息,以及系统如何使用所学信息即时可行地重新实现其设计。我们不仅研究自适应的作用-上面的两项任务是由自适应系统本身执行的-还研究了使用远程服务器或对等设备的辅助适应的作用;我们引入了低成本的区域感知方法系统中的各种变化,包括可以嵌入应用程序中并在现场可编程门阵列(FPGA)上实现的灵活的超紧凑型传感器。此类传感器阵列的总开销仅为1%,可用于获得有关电路延迟,电压噪声甚至泄漏变化的有用信息。我们提出了区域自我优化的补充方法,例如找到最适合给定系统区域的设计替代方案。我们提出了一种新颖的方法来表征局部,不相关的变化。通过系统内噪声仿真,可以发现先前在瞬态故障敏感性中隐藏的变化。相应地,我们通过自省数据展示了自我优化的实用方法,例如本地替换。在通信基础设施,数据中心和空间系统等领域,强烈需要采用物理自适应计算形式。本文为提高PAC的成本和收益提供了实用的方法,并以难以想象的精细物理尺寸促进了资源丰富,可靠的数字系统的愿景。

著录项

  • 作者

    Zick, Kenneth M.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Computer.;Computer Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号