首页> 外文学位 >Solutions to constrained path computation in multi-layer networks.
【24h】

Solutions to constrained path computation in multi-layer networks.

机译:多层网络中约束路径计算的解决方案。

获取原文
获取原文并翻译 | 示例

摘要

Traffic Engineering methods as applied to traditional IP networks rely on link attributes advertised by link state protocols, such as Open Shortest Path First (OSPF) or Intermediate System to Intermediate System (IS-IS). Extending link state protocols to include heterogeneous transport layer attributes brings a more comprehensive view of networks for path computation. A unified control plane, which enables horizontal cooperation between peer layers and vertical integration across layers, facilitates the optimization of network resource and instantiation of cross-layered paths, yet brings to path computation additional challenges. These include but are not limited to Generalized Label Continuity Constraints, such as wavelength continuity and VLAN ( Virtual Local Area Network) tag continuity and Interface Specific Adaptation Constraints such as switching type adaptation constraints when a cross-layered path needs to be setup. These constraints cannot be satisfied by traditional CSPF (Constrained Shortest Path First) or integer linear programming. Moreover, the network graph may not be enough to describe the connectivity of network resources associated with wavelength, VLAN tag or switching type adaptation capabilities.; Furthermore, the dynamic nature of the networks makes all exhaustive search or other NP-hard algorithms practically unattractive.; In this dissertation, we provide the Common Vector solution to the Generalized Label Continuity Constraints. Mathematical analysis and simulation results demonstrate that the algorithm addresses the scalability problem of the existing wavelength graph solution, yet only with minor performance degradation from blocking perspective when the traffic load is not high. Especially, when the label space grows fast, the blocking caused by the lack of common labels is further reduced. Link performance bounds in a ring topology, which can help evaluate the performance degradation of common vector solution more accurately, is also discussed.; For Interface Specific Adaptation Constraints, we provide the Channel Graph solution, which transforms the network graph to channel graph. We prove that this solution addresses both the optimality and scalability problems of path computation in multi-layer networks. We also prove that with assumption that the connectivity and cost of adaptation depends on switching type associated with an interface, the Channel Graph solution is most efficient. In a sparse network, the Channel Graph solution has the same order of computational complexity as running CSPF on network graph.; Simulation results that corroborate those from the analytical models are presented in this dissertation. The solutions to path computation, as discussed here, lend themselves as good candidates for Internet of future. The proposed solutions for switching type adaptation and VLAN tag have also been implemented and verified in practice1.; 1This is done as a part of path computation in Dynamic Resource Allocation in GMPLS Optical Networks (DRAGON ) project, an NSF sponsored project, to create dynamic, deterministic, and manageable end-to-end network transport services for high-end e-Science applications.
机译:应用于传统IP网络的流量工程方法依赖于链路状态协议通告的链路属性,例如开放式最短路径优先(OSPF)或中间系统到中间系统(IS-IS)。扩展链路状态协议以包括异构传输层属性,可以更全面地了解网络以进行路径计算。统一的控制平面可实现对等层之间的水平协作以及跨层的垂直集成,从而有助于优化网络资源和跨层路径的实例化,但给路径计算带来了其他挑战。这些包括但不限于通用标签连续性约束,例如波长连续性和VLAN(虚拟局域网)标签连续性,以及接口特定的适应性约束,例如当需要设置跨层路径时的交换类型适应性约束。传统的CSPF(约束最短路径优先)或整数线性编程无法满足这些约束。此外,网络图可能不足以描述与波长,VLAN标签或交换类型适配功能相关的网络资源的连通性。此外,网络的动态性质使所有穷举搜索或其他NP-hard算法几乎没有吸引力。本文为广义标签连续性约束提供了通用矢量解。数学分析和仿真结果表明,该算法解决了现有波长图解决方案的可伸缩性问题,但从阻塞的角度来看,当流量负载不高时,性能只会出现较小的下降。特别是,当标签空间快速增长时,由于缺少通用标签而引起的阻塞被进一步减少。还讨论了环形拓扑中的链路性能范围,它可以帮助更准确地评估公共矢量解的性能下降。对于特定于接口的适应约束,我们提供了“通道图”解决方案,该解决方案将网络图转换为通道图。我们证明该解决方案可以解决多层网络中路径计算的最佳性和可伸缩性问题。我们还证明,假设连接性和适应性成本取决于与接口关联的交换类型,则“通道图”解决方案是最有效的。在稀疏网络中,通道图解决方案的计算复杂度与在网络图上运行CSPF的计算复杂度相同。本文给出了与分析模型相吻合的仿真结果。此处讨论的路径计算解决方案很适合将来的Internet。在实践中,已经实现并验证了所提出的交换类型自适应和VLAN标签解决方案。 1这是NSF赞助的GMPLS光网络(DRAGON)项目中的动态资源分配中路径计算的一部分,目的是为高端电子科学创建动态,确定性和可管理的端到端网络传输服务。应用程序。

著录项

  • 作者

    Gong, Shujia.;

  • 作者单位

    George Mason University.;

  • 授予单位 George Mason University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号