首页> 外文学位 >Investigating mechanisms of chlorinated ethane biotransformation using compound specific carbon isotope analysis.
【24h】

Investigating mechanisms of chlorinated ethane biotransformation using compound specific carbon isotope analysis.

机译:使用化合物特定碳同位素分析研究氯化乙烷的生物转化机理。

获取原文
获取原文并翻译 | 示例

摘要

Stable carbon isotope fractionation during biotransformation of the chlorinated ethanes 1,2-dichloroethane (1,2-DCA), 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA) was investigated. Isotopic fractionation during aerobic 1,2-DCA biotransformation in microcosms, enrichment cultures and pure microbial cultures was measured and was found to be pathway dependent. Biodegradation of 1,2-DCA under aerobic conditions produced a consistent bimodal distribution of enrichment factors (s) with one mean c centered on --3.9 +/- 0.6‰ and the other on --29.2 +/- 1.9‰. Reevaluation of epsilon in terms of kinetic isotope effects 12k/ 13k, gave values of 12k/13k = 1.01 and 1.06, which are typical of oxidation and hydrolytic dehalogenation (S N2) reactions, respectively. The relationship between degradation pathway and measured carbon isotope fractionation was applied to constrain the degradation pathway of 1,2-DCA in a microbial enrichment culture capable of degrading 1,2-DCA under both O2 and NO3-reducing conditions, but where the degradation pathway was previously uncharacterized. delta 13C values indicated biodegradation in the enrichment culture under both O2 and NO3-reducing conditions likely proceeded via a hydrolytic dehalogenase enzyme. Stable carbon isotope analysis during biotransformation of other chlorinated ethanes was then investigated. Isotopic enrichment factors of -1.9‰ and -10.4‰ were measured during reductive dechlorination of 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA), respectively. These are the first reported isotopic enrichment factors for microbial biotransformation of these compounds, which can now potentially be applied to investigate and quantify biodegradation of 1,1,1-TCA and 1,1-DCA in the field. Stable carbon isotope analysis was used to provide a conservative estimate of the extent of 1,2-DCA and trichloroethene (TCE) biodegradation in a biostimulation field study. Isotope analysis was able to confirm that 1,2-DCA degradation, rather than degradation of vinyl chloride, was the primary mechanism of ethene production at the site. This thesis not only advances the application of compound specific carbon isotope fractionation to identify and quantify biodegradation of chlorinated ethanes in groundwater, but in particular progresses our understanding of the relationship between the enzymatic mechanisms of contaminant degradation and isotopic fractionation, and the ability to use that knowledge to predict degradation mechanisms for previously unconstrained pathways of contaminant remediation.
机译:氯化乙烷1,2-二氯乙烷(1,2-DCA),1,1,1-三氯乙烷(1,1,1-TCA)和1,1-二氯乙烷(1,1-氯)生物转化过程中的稳定碳同位素分馏DCA)进行了调查。在有氧的1,2-DCA生物转化过程中,同位素,富集培养物和纯微生物培养物中的同位素分馏得到了测量,并被发现与途径有关。有氧条件下1,2-DCA的生物降解产生了一致的富集因子双峰分布,一个平均值c以--3.9 +/- 0.6‰为中心,另一个平均值以--29.2 +/- 1.9‰为中心。根据动力学同位素效应12k / 13k重新评估epsilon的值分别为12k / 13k = 1.01和1.06,这分别是氧化和水解脱卤(S N2)反应的典型值。应用降解途径和测得的碳同位素分馏之间的关系来限制能够在O2和NO3还原条件下降解1,2-DCA的微生物富集培养物中1,2-DCA的降解途径,但降解途径在哪里以前没有特征。 δ13​​C值表明在富氧培养液中,在O2和NO3还原条件下,生物降解很可能是通过水解脱卤酶进行的。然后研究了其他氯化乙烷生物转化过程中的稳定碳同位素分析。在1,1,1-三氯乙烷(1,1,1-TCA)和1,1-二氯乙烷(1,1-DCA)的还原脱氯过程中,同位素富集系数分别为-1.9‰和-10.4‰。这些是这些化合物的微生物生物转化的首次报道的同位素富集因子,现在可以潜在地用于研究和量化该领域中1,1,1-TCA和1,1-DCA的生物降解。在生物刺激野外研究中,使用稳定的碳同位素分析来保守估计1,2-DCA和三氯乙烯(TCE)的生物降解程度。同位素分析能够确认1,2-DCA的降解而不是氯乙烯的降解是现场生产乙烯的主要机理。本论文不仅促进了化合物特异性碳同位素分馏在识别和量化地下水中氯乙烷的生物降解方面的应用,而且尤其使我们对污染物降解与同位素分馏的酶促机制之间的关系以及利用该能力的理解有了进一步的了解。可以预测以前不受限制的污染物修复途径的降解机理的知识。

著录项

  • 作者

    Hirschorn, Sarah Kathleen.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Geochemistry.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号