首页> 外文学位 >Investigation of the jamming transition using confocal microscopy of dense colloidal suspensions and complex biomaterials.
【24h】

Investigation of the jamming transition using confocal microscopy of dense colloidal suspensions and complex biomaterials.

机译:使用共聚焦显微镜对稠密的胶体悬浮液和复杂的生物材料进行干扰转变的研究。

获取原文
获取原文并翻译 | 示例

摘要

Jamming is the process by which a liquid stops flowing and assumes some properties commonly associated with solids. Everyday examples include the setting of a bowl of Jell-O(TM) or the vitrification of a molten mixture of silica, lime and soda at the end of a glassblower's blowpipe. In these examples, the system resists flow and can even support some pressure just like a crystalline solid. At the same time its structure is not crystalline and is in fact hardly distinguishable from that of a liquid. Here we focus our attention on two separate but related questions presented by the jamming (or glass) transition.;The dynamical properties of a glass (e.g. viscosity) depend on the time elapsed since vitrification. This slow evolution is called aging and is currently poorly understood. For example a static, or structural, measure of the age of a glass has not yet been identified and aging can only be detected by following the system's dynamics. We consider the aging of the microscopic structure in out-of-equilibrium glasses by measuring local tetrahedral geometry in two systems: a monodisperse colloidal suspension observed by confocal microscopy and a binary Lennard-Jones glass simulated by molecular dynamics. While these models differ in some details they are both widely used in the study of glasses. Tetrahedral structure is found to be a poor indicator of age in the experiments though it weakly correlates with the slowing dynamics. In contrast, the structure of the simulated glass shows clear signs of aging. In both cases, tetrahedral structure samples geometry in a non-trivial way.;Similarly, a static measure of a liquid's proximity to the glass transition has remained elusive. We present preliminary results from a magnetic tweezers experiment aimed at dynamically exciting a dormant length scale in a binary "supercooled" colloidal liquid. We observe the sample's local response to a point disturbance from a magnetic probe. We find that the disturbance decays exponentially from the probe's position with a characteristic length scale of 2-3 particle diameters. We do not observe appreciable variation with packing fraction or applied force.;Finally we present some microrheological data from a genetically designed Ca2+ sensitive biomaterial. We find that upon addition of Ca 2+ the viscosity of the protein solution can be varied by three orders of magnitude. We found this increase to be highly specific to the nature of the added divalent cation and fully reversible upon addition of a calcium chelator. This work lays the foundation for developing a material which might exhibit elasticity allowing us to test the universality of the jamming transition.
机译:堵塞是液体停止流动并呈现出通常与固体相关的某些特性的过程。日常的例子包括在吹玻璃器的吹管末端设置一碗Jell-O™或将二氧化硅,石灰和苏打的熔融混合物玻璃化。在这些示例中,该系统可以阻止流动,甚至可以像结晶固体一样承受一些压力。同时,它的结构不是晶体,实际上很难与液体区分开。在这里,我们将注意力集中在由干扰(或玻璃)转变引起的两个独立但相关的问题上;玻璃的动力学特性(例如粘度)取决于自玻璃化以来经过的时间。这种缓慢的演变称为衰老,目前知之甚少。例如,尚未确定玻璃寿命的静态或结构性度量,只能通过跟踪系统的动力学来检测老化。我们通过测量两个系统中的局部四面体几何形状来考虑失衡玻璃中微观结构的老化:通过共聚焦显微镜观察的单分散胶体悬浮液和通过分子动力学模拟的二元Lennard-Jones玻璃。尽管这些模型在某些细节上有所不同,但它们都广泛用于眼镜的研究中。在实验中发现四面体结构与年龄的下降无关,尽管它与缓慢的动力学关系不大。相反,模拟玻璃的结构显示出明显的老化迹象。在这两种情况下,四面体结构都以不平凡的方式对几何形状进行采样。类似地,仍然难以确定液体与玻璃化转变附近的静态度量。我们从磁力镊子实验中获得初步结果,该实验旨在动态激发二元“过冷”胶体液体中的休眠长度尺度。我们观察样品对磁探针的点干扰的局部响应。我们发现扰动从探头的位置呈指数衰减,其特征长度尺度为2-3个粒径。我们没有观察到填充率​​或施加力的明显变化。最后,我们提供了一些由遗传设计的对Ca2 +敏感的生物材料的微流变数据。我们发现添加Ca 2+后,蛋白质溶液的粘度可以变化三个数量级。我们发现这种增加对所添加的二价阳离子的性质高度特异性,并且在添加钙螯合剂后完全可逆。这项工作为开发一种具有弹性的材料打下了基础,这使我们能够测试干扰过渡的普遍性。

著录项

  • 作者

    Cianci, Gianguido C.;

  • 作者单位

    Emory University.;

  • 授予单位 Emory University.;
  • 学科 Physics Condensed Matter.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 76 p.
  • 总页数 76
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号