首页> 外文学位 >Static and dynamic magnetism in the electron-doped high-temperature superconductor PLCCO and in the f-electron, non-Fermi liquid alloy ScUPd.
【24h】

Static and dynamic magnetism in the electron-doped high-temperature superconductor PLCCO and in the f-electron, non-Fermi liquid alloy ScUPd.

机译:电子掺杂的高温超导体PLCCO和f电子非费米液态合金ScUPd中的静态和动态磁性。

获取原文
获取原文并翻译 | 示例

摘要

Here we present detailed studies of the spin dynamics within the electron-doped high temperature superconductor Pr0.88LaCe0.12CuO 4-delta (PLCCO) and within the non-Fermi liquid metal Sc1-xU xPd3 (ScUPd). Comprehensive neutron scattering experiments were carried out mapping the evolution of magnetism within these systems as they are tuned across their respective phase diagrams. The novel features of the magnetic spectra within these systems are correlated with known anomalies in their quasiparticle behaviors driven through either the appearance of a superconducting phase in PLCCO or the emergence of a non-Fermi liquid phase in ScUPd.;For the high-Tc cuprate Pr0.88LaCe0.12CuO 4-delta, a detailed study of the evolution of the low energy spin excitations in this system is presented. In the unannealed, nonsuperconducting parent compound of PLCCO, the magnon excitations are well modeled as spin wave excitations arising from the long-range antiferromagnetic (AF) order in the system. As the system is doped into the superconducting phase towards optimal superconductivity, long-range AF order in the system is suppressed and low energy spin excitations behave drastically different than those observed in the NSC parent system. Instead of following the simple Bose statistics expected for spin wave magnon modes, the low energy excitations in superconducting concentrations show a form of hyperscaling in which the dynamic susceptibility is observed to scale as a function of o/T. This likely reflects the influence of quantum critical excitations coupling to the spin degrees of freedom that arise from the quantum critical point in the phase diagram of PLCCO (where AF order is suppressed to 0K near optimal doping).;High energy spin excitations in an under-doped concentration of PLCCO (Tc=21K) are also reported. Our experiments show that in contrast to the seemingly universal pattern of dispersion reported the spin excitations of hole-doped cuprates, the high energy excitations in this n-type system instead resemble those observed in the parent compounds of the high-T c cuprates. Rather than the "hourglass"-type dispersion observed in hole-doped cuprates, the dispersion in this n-type system remains a broadened commensurate spot at low energies that disperses outward into a ring-like excitation at higher energy transfers. The actual dispersion for this underdoped concentration at higher energies is anomalously sharper than that reported for the parent systems, Pr2CuO 4 and La2CuO4.;Another facet of the spin excitations in PLCCO given particular focus is the newly discovered resonance mode in nearly optimally doped concentrations of PLCCO (Tc=24K). We find that the resonance mode in this system follows the universal relation ER=5.8kBTc for the resonance energies observed in all classes of cuprates. The resonance, when taken with the known commensurate response and high energy dispersion in the electron-doped cuprates, is therefore shown to stand as the long unifying feature in magnetic spectra of the cuprates, regardless of doped carrier-type. Field-induced changes in the magnetic spectrum of this optimally doped concentration of PLCCO (Tc=24K) are also discussed. Particular focus is given to the suppression of the resonance mode and field-induced spin density wave order in this system. The suppression of the resonance mode is seen to track the condensation energy in relative magnitude as a function of applied magnetic field, thereby suggesting that the mode itself is fundamentally connected to the mechanism of high-Tc superconductivity.;For our studies of Sc1-xUxPd3, systematic neutron measurements mapped out magnetic excitations over a broad doping range. Concentrations near x=0.30, where the non-Fermi liquid (NFL) phase first appears, exhibit a seemingly local and nearly temperature-independent response in the spin excitation spectra. This parallels earlier results reported for another NFL system, UCu4Pd, whose spin dynamics acquire a local temperature insensitive character near the NFL phase boundary. We find that this spin behavior is characteristic of the proximity of a spin-glass quantum critical point in the phase diagram of these systems and possibly intrinsic to the appearance of NFL dynamics in these classes of materials.
机译:在这里,我们对电子掺杂的高温超导体Pr0.88LaCe0.12CuO 4-delta(PLCCO)和非费米液态金属Sc1-xU xPd3(ScUPd)内的自旋动力学进行了详细的研究。进行了全面的中子散射实验,绘制了这些系统内各个相图之间的磁场演化图。这些系统中的电磁波谱的新特征与已知的准粒子行为异常有关,这些异常行为是由PLCCO中超导相的出现或ScUPd中非费米液相的出现驱动的。 Pr0.88LaCe0.12CuO 4-delta,给出了该系统中低能自旋激发演化的详细研究。在PLCCO的未退火,非超导母体化合物中,磁振子激励被很好地建模为系统中远距离反铁磁(AF)阶跃引起的自旋波激励。当系统被掺杂到超导相中以达到最佳超导性时,系统中的远距离AF阶被抑制,低能自旋激发的行为与NSC母系统中观察到的完全不同。超导浓度下的低能激发不是遵循自旋波磁振子模式的简单Bose统计,而是表现为一种超比例化,其中观察到动态磁化率随o / T的变化而缩放。这很可能反映了量子临界激发对耦合自旋自由度的影响,该自旋自由度是由PLCCO相图中的量子临界点产生的(其中AF阶被抑制到接近最佳掺杂的0K)。还报道了掺杂的PLCCO的浓度(Tc = 21K)。我们的实验表明,与看似通用的色散模式报道的掺杂空穴的铜酸盐的自旋激发相反,在此n型体系中的高能激发类似于在高T c铜酸盐的母体化合物中观察到的那些。不同于在掺杂孔的铜酸盐中观察到的“沙漏”型色散,在此n型系统中的色散在低能量下仍保持一个宽广的对应点,在较高的能量转移下向外分散成环状激发。在较高的能量下,这种低掺杂浓度的实际色散比其母体系统Pr2CuO 4和La2CuO4的异常色散异常锐利; PLCCO自旋激发的另一个方面是新近发现的,在最佳掺杂浓度下的共振模式。 PLCCO(Tc = 24K)。我们发现,在所有类别的铜酸盐中观察到的共振能量,该系统的共振模式遵循通用关系ER = 5.8kBTc。因此,当以已知的相应响应和在电子掺杂的铜酸盐中的高能量色散进行共振时,无论掺杂的载流子类型如何,共振均显示为铜酸盐的磁谱中的长期统一特征。还讨论了该最佳掺杂浓度PLCCO(Tc = 24K)的磁场引起的磁场变化。在该系统中,特别着重于抑制共振模式和场感应自旋密度波阶。共振模式的抑制被认为是相对大小的凝结能量随所施加的磁场而变化的,从而表明该模式本身从根本上与高Tc超导机制有关。;对于我们对Sc1-xUxPd3的研究,系统的中子测量可在较宽的掺杂范围内绘制出磁激发。在非费米液体(NFL)相首先出现的x = 0.30附近的浓度在自旋激发光谱中表现出看似局部且几乎与温度无关的响应。这与先前报道的另一个NFL系统UCu4Pd的结果相似,该系统的自旋动力学在NFL相界附近获得了局部温度不敏感的特性。我们发现,这种自旋行为是这些系统的相图中自旋玻璃量子临界点附近的特征,并且可能是这些类材料中NFL动力学出现的固有特征。

著录项

  • 作者

    Wilson, Stephen Dennis.;

  • 作者单位

    The University of Tennessee.;

  • 授予单位 The University of Tennessee.;
  • 学科 Physics Electricity and Magnetism.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号