首页> 外文学位 >Atomistic simulations for the prediction of physical properties of cement-based materials.
【24h】

Atomistic simulations for the prediction of physical properties of cement-based materials.

机译:用于预测水泥基材料物理性能的原子模拟。

获取原文
获取原文并翻译 | 示例

摘要

A number of different complex reactions occur during the hydration of cement i.e., when an anhydrous cement powder is mixed with water. The hydration process yields a porous, complex multi-phase, heterogeneous and amorphous cement paste matrix. One of the most important hydration products of the cement-based materials is Calcium silicate hydrates (C-S-H) which constitutes about 60-70% of completely hydrated cement. Hence, C-S-H is believed to be responsible for the properties (such as hardness, cohesion, strength etc.) of the cementitious materials. If the individual atoms in the structure of C-S-H could be manipulated at the nano scale, it is possible to obtain better control over macroscopic material properties of the cement-based materials. Ultimately, this could result in new products which are more durable and stronger. Unfortunately, due to the amorphous nature of C-S-H, its atomic structure is not well understood. A comprehensive understanding of its chemistry (atomic structure) could lead to an improved control of their material properties at the nano level. But this is not an easy task because the continuous changes that occur in the structure of C-S-H with respect to time and environment make experimental examination of its structure extremely difficult. Even with the use of sophisticated experimental techniques such as Powder Diffraction (X-Ray, Electron and Neutron Diffractions), Nuclear Magnetic Resonance, Scanning Electron Microscopy, Atomic Force Microscopy, the structure of C-S-H is not completely understood. However, some poorly defined, yet, consistent patterns are already identified, that C-S-H is a layered structure comprising Calcium and water molecules sandwiched between the tetrahedral silicate chains. Hence, a computational approach is sought in this work to investigate the atomic structure of C-S-H which in turn will help in understanding the related experimental studies.;In this research work, as a start, the atomic structure of C-S-H is modeled with the help of atomic configurations of some naturally existing perfect crystals like Tobermorite, Jennite etc. that have closer structural similarities with C-S-H. The mechanical properties (such as Young's modulus, Poisson's ratio, Bulk modulus, and Shear modulus) of these structures have been determined with the help of Energy Optimization studies through GULP code. The calculated bulk properties of the crystalline C-S-H models are found to be 4 to 5 times greater than the existing experimental data for the bulk cement pastes. The reasons for these exaggerated values have been investigated and analyzed. Some probable explanations for the over estimation could be: (a) Defect free C-S-H model considered for the study; (b) Inability to account porosity in the model.;Two different methods are presented in this work to resolve the aforesaid problems and to make the results more realistic and comparable with the experimental data. Firstly, the atomic structures of C-S-H are modeled with finite length of silicate chains (dimmer) as it is not a perfect crystal. Secondly, a packing factor is included in the calculation of bulk properties using Mori-Tanaka equations inorder to consider the porous nature of the cement-based materials. After making these two amendments, the calculated bulk properties of C-S-H are then in close agreement with the experimental data. Also, a possible predictive structure for C-S-H is also proposed. Our computations show that the length of the silicate chains has a significant effect on the bulk properties of C-S-H.
机译:在水泥的水合过程中,即当无水水泥粉末与水混合时,会发生许多不同的复杂反应。水合过程产生多孔,复杂的多相,非均质和无定形水泥浆基质。水泥基材料最重要的水合产物之一是硅酸钙水合物(C-S-H),约占完全水合水泥的60-70%。因此,据信C-S-H负责胶凝材料的性质(例如硬度,内聚力,强度等)。如果C-S-H结构中的单个原子可以在纳米尺度上操作,则可以更好地控制水泥基材料的宏观材料性能。最终,这可能会导致新产品更耐用,更坚固。不幸的是,由于C-S-H的无定形性质,其原子结构尚未得到很好的理解。对它的化学(原子结构)的全面理解可以导致在纳米水平上对其材料性能的改进控制。但这不是一件容易的事,因为C-S-H的结构在时间和环境方面不断发生变化,使得对其结构进行实验检查极为困难。即使使用复杂的实验技术,例如粉末衍射(X射线,电子和中子衍射),核磁共振,扫描电子显微镜,原子力显微镜,也无法完全理解C-S-H的结构。但是,已经确定了一些定义不明确的一致图案,即C-S-H是一种层状结构,其中包含钙和夹在四面体硅酸盐链之间的水分子。因此,本研究寻求一种计算方法来研究CSH的原子结构,这反过来将有助于理解相关的实验研究。;在本研究工作中,首先,CSH的原子结构是通过以下方式建模的:一些天然存在的完美晶体的原子构型,例如Tobermorite,Jennite等,它们与CSH的结构相似。这些结构的机械性能(例如杨氏模量,泊松比,体积模量和剪切模量)已通过GULP代码在能源优化研究的帮助下确定。发现结晶C-S-H模型的体积特性比现有的水泥浆糊实验数据大4至5倍。这些夸大值的原因已经过调查和分析。过度估计的一些可能解释可能是:(a)研究中考虑的无缺陷C-S-H模型; (b)无法计算模型中的孔隙率。这项工作提出了两种不同的方法来解决上述问题,并使结果更真实,并且与实验数据具有可比性。首先,C-S-H的原子结构是用有限长度的硅酸盐链(二聚体)建模的,因为它不是完美的晶体。其次,为了考虑水泥基材料的多孔性,在使用Mori-Tanaka方程计算体积特性时要考虑填充因子。进行这两个修正后,C-S-H的计算的整体性质与实验数据非常吻合。此外,还提出了C-S-H可能的预测结构。我们的计算表明,硅酸盐链的长度对C-S-H的整体性质有重大影响。

著录项

  • 作者单位

    University of Arkansas.;

  • 授予单位 University of Arkansas.;
  • 学科 Engineering Civil.
  • 学位 M.S.C.E.
  • 年度 2008
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号