首页> 外文学位 >Investigation of reactions of complex epoxides on silver(110): A combined experimental and theoretical study.
【24h】

Investigation of reactions of complex epoxides on silver(110): A combined experimental and theoretical study.

机译:银(110)上复杂环氧化物的反应研究:结合实验和理论研究。

获取原文
获取原文并翻译 | 示例

摘要

Direct oxidation processes, such as ethylene epoxidation to ethylene oxide, have been researched extensively due to the uniqueness of this process and to the commercial significance of the epoxide product. Despite the importance of epoxide production, the mechanistic details of olefin epoxidation remained obscure until recently and the majority of significant advances in Ag catalyst development occurred primarily through empirical methods. Recent surface science studies of ethylene oxide on Ag(111) have identified an oxametallacycle as the active intermediate in ethylene epoxidation; expansion of the epoxide ring to incorporate surface silver atoms forms the oxametallacycle species. Oxametallacycles have been isolated by ring-opening ethylene oxide on Ag(111) and Ag(110), 1-epoxy-3-butene on Ag(111) and Ag(110), styrene oxide on Ag(111) and Ag(110) and isoprene oxide and propylene oxide on Ag(110).;Surface science techniques and Density Functional Theory (DFT) were used in this study to investigate the interactions of styrene oxide and isoprene oxide with the Ag(110) surface, as well as the interactions of ethylene oxide and propylene oxide with the clean and O-covered Ag(110) surfaces.;TPD experiments demonstrate that the styrene oxide ring opens at the substituted carbon, and DFT calculations indicate that the phenyl ring of the resulting oxametallacycle is oriented nearly parallel to the Ag(110) surface. Interaction of the phenyl group with the silver surface stabilizes this intermediate relative to that derived from the mono-olefin epoxide, ethylene oxide. During TPD, the oxametallacycle undergoes ring closure to reform styrene oxide and isomerization to phenylacetaldehyde at 505 K on Ag(110). Styrene oxide-derived oxametallacycles exhibit similar ring-closure behavior on the Ag(111) surface.;Isoprene oxide also forms a strongly bound oxametallacycle intermediate on the Ag(110) surface. The oxametallacycle undergoes ring-closure to reform isoprene oxide in two peaks at 320 and 460 K when synthesized by epoxide adsorption at low temperatures. Epoxide doses at higher surface temperatures (ca. 300 K) lead to isomerization of the oxametallacycle and desorption of the aldehyde isomer, 2-methyl-2-butenal, in a single peak at 460 K. This work represents the first demonstration of a surface oxametallacycle species derived from an allylic epoxide. Similar to oxametallacycles derived from the non-allylic epoxides, isoprene oxide ring opens at the carbon bound to the unsaturated vinyl and methyl substituent groups to form a linear oxametallacycle on the Ag(110) surface. The structure of the isoprene oxide-derived oxametallacycle resembles that formed from ring-opening its non-allylic counterpart, 1-epoxy-3-butene, on Ag(110), according to DFT calculations.;Following adsorption at 250 K on both clean and O-covered Ag(110), ethylene oxide ring-opens to form a stable oxametallacycle. On the clean Ag(110) surface, the oxametallacycle reacts to reform the parent epoxide at 280 K during TPD, while the aldehyde isomer, acetaldehyde, is observed at higher oxametallacycle coverages. In the presence of coadsorbed oxygen atoms, a portion of the oxametallacycles dissociate to release ethylene. However, of those that react to form oxygen-containing products, the fraction forming ethylene oxide is similar to that on the clean surface. The acetaldehyde product of oxametallacycle reactions combusts via formation of acetate species; the acetates react to form CO2 at temperatures as low as 360 K on the O-covered surface. No evidence was observed for other combustion channels. This work provides experimental evidence for the connection of oxametallacycles to combustion via acetaldehyde formation, as well as to ring-closure to form ethylene oxide.;Adsorption of propylene oxide at 120 K with subsequent flash of the surface to 230 K prior to TPD leads to the formation of a stable oxametallacycle on both the clean and O-covered Ag(110) surfaces; the oxametallacycle then undergoes ring-closure to reform propylene oxide at 250 K during TPD. The selectivity to propylene oxide decreases at higher oxametallacycle coverages where acetone and allyl alcohol are formed; carbon dioxide is also formed near 250, 350, and 450 K from reactions of the oxametallacycle and its products on the O-covered surface. At higher oxametallacycle coverages, additional higher temperature desorptions are observed at 300 and 400 K; the product distributions in these peaks are the same as that in the 250 K peak. Similar to reactions of ethylene oxide on the O-covered Ag(110) surface, the same fraction of oxametallacycle species reacts to form propylene oxide in the presence of co-adsorbed oxygen as that on the clean surface, although the coverage of oxametallacycles is 10-20% higher on the O-covered surface. The principal effects of co-adsorbed oxygen are to increase the capacity of the surface and to open an additional combustion pathway to CO2. The oxametallacycle undergoes combustion through a propionaldehyde species. This work represents the first time that an oxametallacycle has been linked to propylene oxide production.
机译:由于该方法的独特性和环氧产品的商业意义,已经对直接氧化方法进行了广泛研究,例如将乙烯环氧化为环氧乙烷。尽管环氧化合物的生产很重要,但是直到最近,烯烃环氧化的机理细节仍然不清楚,并且大多数Ag催化剂开发的重大进展主要是通过经验方法进行的。最近在Ag(111)上对环氧乙烷进行的表面科学研究已确定,氧杂金属环是乙烯环氧化的活性中间体。环氧环的膨胀结合表面银原子形成氧杂金属环物种。通过在Ag(111)和Ag(110)上开环环氧乙烷,在Ag(111)和Ag(110)上开环1-环氧-3-丁烯,在Ag(111)和Ag(110)上氧化苯乙烯来分离氧杂金属环。 )以及在Ag(110)上的异戊二烯和环氧丙烷。;采用表面科学技术和密度泛函理论(DFT)来研究氧化苯乙烯和异戊二烯与Ag(110)表面之间的相互作用,以及TPD实验表明,苯乙烯氧化物环在取代的碳原子上打开,而DFT计算表明所得的oxametallacycle的苯环是定向的几乎平行于Ag(110)表面。相对于衍生自单烯烃环氧化物环氧乙烷的苯基,苯基与银表面的相互作用使该中间体稳定。在TPD期间,氧杂金属环发生闭环反应以重整环氧乙烷并在505 K的Ag(110)上异构化为苯乙醛。苯乙烯氧化物衍生的oxametallacycles在Ag(111)表面上表现出类似的闭环行为;异戊二烯氧化物还在Ag(110)表面上形成牢固结合的oxametallacycle中间体。当在低温下通过环氧化物吸附合成时,氧杂金属环经历闭环反应以在320和460 K的两个峰处重整异戊二烯氧化物。较高表面温度(约300 K)下的环氧剂量导致oxametallacycle的异构化和醛异构体2-甲基-2-丁烯醛的解吸在460 K处出现一个峰。该工作代表了表面的首次证明衍生自烯丙基环氧化物的氧杂金属环氧化物物种。与衍生自非烯丙基环氧化物的氧杂金属环类似,异戊二烯氧化物环在与不饱和乙烯基和甲基取代基键合的碳上打开,从而在Ag(110)表面上形成线性氧杂金属环。根据DFT计算,异戊二烯氧化物衍生的oxametallacycle的结构类似于在Ag(110)上将其非烯丙基对应物1-环氧-3-丁烯开环形成的过程;随后在两个干净的条件下均以250 K吸附和O覆盖的Ag(110),环氧乙烷开环形成稳定的oxametallacycle。 TPD期间,在干净的Ag(110)表面上,金属氧杂环发生反应以重整母体环氧化物,而在较高的金属氧杂环覆盖率下观察到醛异构体乙醛。在共吸附的氧原子的存在下,一部分的氧杂金属环解离释放出乙烯。然而,在那些反应形成含氧产物的反应物中,形成环氧乙烷的馏分与清洁表面上的馏分相似。氧杂金属环氧化物反应的乙醛产物通过形成乙酸盐物质而燃烧。乙酸盐在低至360 K的温度下在被O覆盖的表面反应生成CO2。没有观察到其他燃烧通道的证据。这项工作为氧杂金属环化合物通过乙醛的形成与燃烧的连接以及闭环形成环氧乙烷提供了实验证据。;在TPD之前,在120 K下吸附环氧丙烷,随后表面闪蒸到230 K,导致在干净和O覆盖的Ag(110)表面上均形成稳定的oxametallacycle;然后,在TPD期间,氧杂金属环在250 K下进行闭环重整环氧丙烷。在较高的氧杂金属环氧化物覆盖率下,形成丙酮和烯丙醇的环氧丙烷的选择性降低。氧杂金属环及其产物在O覆盖表面上的反应还会在250、350和450 K附近形成二氧化碳。在较高的氧杂金属环氧化物覆盖率下,在300和400 K时观察到了更高的温度解吸。这些峰中的产物分布与250 K峰中的产物分布相同。类似于环氧乙烷在O覆盖的Ag(110)表面上的反应,在共吸附氧的存在下,相同部分的氧杂金属环氧化物反应形成环氧丙烷,与在清洁表面上的环氧乙烷相同,尽管在O覆盖的表面上,草金属环的覆盖率要高10-20%。共吸附氧的主要作用是增加表面的容量,并打开通往CO2的附加燃烧路径。氧杂金属环化合物通过丙醛物质进行燃烧。这项工作是首次将金属氧杂环化合物与环氧丙烷生产联系起来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号