首页> 外文学位 >Disproving in First-Order Logic with Definitions, Arithmetic and Finite Domains
【24h】

Disproving in First-Order Logic with Definitions, Arithmetic and Finite Domains

机译:用定义,算术和有限域进行一阶逻辑的证明

获取原文
获取原文并翻译 | 示例

摘要

This thesis explores several methods which enable a first-order reasoner to conclude satisfiability of a formula modulo an arithmetic theory. The most general method requires restricting certain quantifiers to range over finite sets; such assumptions are common in the software verification setting. In addition, the use of first-order reasoning allows for an implicit representation of those finite sets, which can avoid scalability problems that affect other quantified reasoning methods. These new techniques form a useful complement to existing methods that are primarily aimed at proving validity.;The Superposition calculus for hierarchic theory combinations provides a basis for reasoning modulo theories in a first-order setting. The recent account of 'weak abstraction' and related improvements make an mplementation of the calculus practical. Also, for several logical theories of interest Superposition is an effective decision procedure for the quantifier free fragment.;The first contribution is an implementation of that calculus (Beagle), including an optimized implementation of Cooper's algorithm for quantifier elimination in the theory of linear integer arithmetic. This includes a novel means of extracting values for quantified variables in satisfiable integer problems. Beagle won an efficiency award at CADE Automated theorem prover System Competition (CASC)-J7, and won the arithmetic non-theorem category at CASC-25. This implementation is the start point for solving the 'disproving with theories' problem.;Some hypotheses can be disproved by showing that, together with axioms the hypothesis is unsatisfiable. Often this is relative to other axioms that enrich a base theory by defining new functions. In that case, the disproof is contingent on the satisfiability of the enrichment.;Satisfiability in this context is undecidable. Instead, general characterizations of definition formulas, which do not alter the satisfiability status of the main axioms, are given. These general criteria apply to recursive definitions, definitions over lists, and to arrays. This allows proving some non-theorems which are otherwise intractable, and justifies similar disproofs of non-linear arithmetic formulas.;When the hypothesis is contingently true, disproof requires proving existence of a model. If the Superposition calculus saturates a clause set, then a model exists, but only when the clause set satisfies a completeness criterion. This requires each instance of an uninterpreted, theory-sorted term to have a definition in terms of theory symbols.;The second contribution is a procedure that creates such definitions, given that a subset of quantifiers range over finite sets. Definitions are produced in a counter-example driven way via a sequence of over and under approximations to the clause set. Two descriptions of the method are given: the first uses the component solver modularly, but has an inefficient counter-example heuristic. The second is more general, correcting many of the inefficiencies of the first, yet it requires tracking clauses through a proof. This latter method is shown to apply also to lists and to problems with unbounded quantifiers. Together, these tools give new ways for applying successful first-order reasoning methods to problems involving interpreted theories.
机译:本文探索了几种方法,这些方法使一阶推理机能够以算术理论为模,得出公式的可满足性。最通用的方法要求将某些量词限制在有限的范围内。这种假设在软件验证设置中很常见。此外,使用一阶推理可以隐式表示这些有限集,从而可以避免影响其他量化推理方法的可伸缩性问题。这些新技术为主要旨在证明有效性的现有方法提供了有用的补充。分层理论组合的叠加演算为在一阶设置中对模理论进行推理提供了基础。最近对“弱抽象”的描述和相关改进使微积分的实现成为现实。同样,对于一些感兴趣的逻辑理论,叠加是无量词片段的有效决策过程。第一个贡献是该演算(Beagle)的实现,包括线性整数理论中用于消除量词的Cooper算法的优化实现算术。这包括一种提取可满足整数问题中量化变量值的新颖方法。 Beagle在CADE自动化定理证明人系统竞赛(CASC)-J7中获得了效率奖,并在CASC-25上获得了算术非定理类别。这种实现是解决“用理论反驳”问题的起点。通过证明该假说与公理一起是无法满足的,可以驳斥某些假说。通常这与其他公理有关,这些公理通过定义新功能来丰富基础理论。在这种情况下,打乱取决于浓缩的可满足性。在这种情况下,可满足性是不确定的。取而代之的是给出了定义公式的一般特征,这些特征不会改变主要公理的可满足性状态。这些一般标准适用于递归定义,列表定义和数组。这允许证明一些原本难以处理的非定理,并证明非线性算术公式的类似证明是正确的。当假设连续成立时,证明需要证明模型存在。如果叠加演算使子句集饱和,则存在模型,但仅当子句集满足完整性条件时才存在。这要求未解释的,理论分类的术语的每个实例都具有根据理论符号定义的定义。第二个贡献是创建这样的定义的过程,假设量词的子集在有限集合内。定义是通过反例驱动方式,通过子句集的一系列上下近似的方式生成的。给出了对该方法的两个描述:第一个以模块化方式使用组件求解器,但是反演启发式方法效率低下。第二个更笼统,纠正了第一个的许多低效率之处,但它需要通过证明来跟踪条款。已显示后一种方法也适用于列表和无边界量词的问题。这些工具在一起提供了将成功的一阶推理方法应用于涉及解释理论的问题的新方法。

著录项

  • 作者

    Bax, Joshua.;

  • 作者单位

    The Australian National University (Australia).;

  • 授予单位 The Australian National University (Australia).;
  • 学科 Computer science.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生理学;
  • 关键词

  • 入库时间 2022-08-17 11:39:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号