首页> 外文学位 >Three Dimensional Control of High-Speed Cavity Flow Oscillations
【24h】

Three Dimensional Control of High-Speed Cavity Flow Oscillations

机译:高速腔流振荡的三维控制

获取原文
获取原文并翻译 | 示例

摘要

Cavity structures, like weapons bays and landing gear wells on aircraft, suffer from severe oscillations under high speed flow conditions. These oscillations are associated with intense surface pressure/velocity fluctuations inside the cavity which can radiate strong acoustic waves and cause structural damage. The physics of cavity flows have been studied for several decades with much of the effort put towards flow controls to reduce these oscillations.;Geometric modifications of the cavity structure are usually only effective for suppressing the oscillations within the designed flow conditions. Therefore, active flow control is more attractive for a wider application range. Previous research have proven that mass/momentum injection at the cavity leading edge can effectively suppress the pressure/velocity fluctuations. Due to the limited control authorities of current actuators, a steady actuation which introduces three-dimensional disturbances is studied to reduce the energy requirements of the actuator and improve the suppression of the oscillations over a wide range of free-stream Mach numbers. Surface fluctuating pressure measurements are acquired to determine the control performances of a number of 3-D actuation configurations. Flow fields, including velocity fields and density gradient fields, are measured to reveal the flow features with and without the flow control. Mathematical methods, including modal decomposition analysis, are further applied to study the dynamics of the flow field. All of these analyses together elucidate the effective 3-D actuation mechanism in the cavity flow control. The suppression of pressure fluctuations are obtained in both full-span and finite-span cavities. The successful flow control is found to be the redistribution of the energy in the shear layer by the counter-rotating-vortex pairs, which are introduced by the 3-D actuation in the cross-flow. In addition, a design guide for the actuator geometry is given based on the observations.
机译:飞机上的武器架和起落架井等腔体结构在高速流动条件下会遭受严重的振动。这些振动与空腔内部的剧烈表面压力/速度波动有关,该波动会辐射出强烈的声波并引起结构损坏。腔流的物理学已经研究了数十年,为减少这些振荡而对流量控制做出了很多努力。腔结构的几何修改通常仅对抑制设计流量条件下的振荡有效。因此,主动流量控制对于更广泛的应用范围更具吸引力。先前的研究已经证明,在腔体前缘进行质量/动量注射可以有效地抑制压力/速度波动。由于当前执行器的控制权限有限,因此研究了一种引入三维干扰的稳定执行器,以降低执行器的能量需求,并在宽范围的自由流马赫数范围内改善对振荡的抑制。获取表面波动压力测量值以确定许多3-D驱动配置的控制性能。测量流场,包括速度场和密度梯度场,以显示有或没有流控制的流特征。包括模态分解分析在内的数学方法被进一步应用于研究流场的动力学。所有这些分析共同阐明了腔流控制中的有效3-D驱动机制。在全跨腔和有限跨腔中均可以抑制压力波动。发现成功的流量控制是通过反向旋转涡流对将剪切层中的能量重新分配,该反向旋转涡流对是由横流中的3-D驱动引入的。此外,根据观察结果给出了执行器几何形状的设计指南。

著录项

  • 作者

    Zhang, Yang.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号