首页> 外文学位 >A study of slag freezing in metallurgical furnaces.
【24h】

A study of slag freezing in metallurgical furnaces.

机译:冶金炉渣冻结的研究。

获取原文
获取原文并翻译 | 示例

摘要

Many smelting and slag-cleaning furnaces operate with cooling systems designed to freeze a slag layer over the refractory to protect it. The fluid flow and heat transfer conditions associated with the freeze layer and mushy zones are poorly understood. This study was conducted to understand the chill layer formation and heat transfer that is required to design cooling systems in pyrometallurgical operations where a slag layer is required to protect the furnace wall.; The freeze layer formation and heat transfer in mushy zones were experimentally study at room temperature in a 2-dimensional square cavity differentially heated, using an aqueous solution of calcium chloride to simulate the slag. Reasonable similarity with conditions encountered with copper and nickel smelting systems was achieved (Pr ≈ 50 and Ra ≈ 108, in the laminar-turbulent transition). Measurements of velocities were made with the Particle Image Velocimetry (PIV) technique. The freeze layer development was tracked using a digital camera.; Direct Numerical Simulations (DNS) of the mean flow using a finite control volume technique with a fixed domain method were also made of the unsteady fluid flow and heat transfer problem. It was found that the macro solidification process is well described using an improved model for high molecular viscosity in the mushy zone. Solid front growth, isothermal profiles, velocity profiles and heat transfer through the walls showed good agreement between the PIV and DNS results. Experimental and numerical velocity profiles close to the freeze layer show a parabolic behaviour in the vertical velocity profile which is completely different from the calculation of heat transfer using a sharp interface model. The reason for this is attributed to the effects of the mushy zone with a high viscosity and high shear stresses acting on that area.; In Part III of this Thesis, effects of slag viscosity temperature relationship were analysed with a two-dimensional mathematical model of an electric smelting furnace. The model was focused on the fluid dynamics of the molten slag and the effects over the formation of magnetite-rich slag layer over the walls. The results of the previous experimental and mathematical work, Part I and II, were used to describe mathematically the freeze layer formation on the furnace walls using a fixed-grid model from a highly viscous liquid. Chemical composition of the slag was taken into account through the effect of the viscous activation energy as well the solidus and liquidus temperatures. The results show that the flow pattern is strongly affected in the areas of high viscosity. The results are discussed in terms of heat flux over the refractories and their effects on cooling system design.
机译:许多熔炼炉和炉渣清洁炉均采用冷却系统运行,该冷却系统旨在冻结耐火材料上的炉渣层以保护炉渣。与冷冻层和糊状区相关的流体流动和传热条件知之甚少。进行这项研究的目的是为了理解在热冶金操作中设计冷却系统所需要的冷却层的形成和传热,在该系统中需要熔渣层来保护炉壁。在室温下,在二维加热的二维方腔中,使用氯化钙水溶液模拟炉渣,对糊状区中的冻结层形成和传热进行了实验研究。实现了与铜和镍熔炼系统所遇到条件的合理相似性(在层流湍流过渡中,Pr≈ 50和Ra≈ 108)。使用粒子图像测速(PIV)技术进行速度测量。使用数码相机跟踪冻结层的发展。还使用有限控制体积技术和固定域方法对平均流量进行了直接数值模拟(DNS),从而解决了非恒定流体流动和传热问题。发现使用在糊状区中的高分子粘度的改进模型很好地描述了宏观凝固过程。固体前沿生长,等温线,速度线和通过壁的传热显示PIV和DNS结果之间有很好的一致性。接近冻结层的实验和数值速度剖面显示了垂直速度剖面中的抛物线行为,这与使用尖锐的界面模型进行的传热计算完全不同。其原因归因于糊状区域的作用,该区域具有高粘度和高剪切应力。在本论文的第三部分中,利用电熔炉的二维数学模型分析了炉渣粘度温度关系的影响。该模型集中于熔融炉渣的流体动力学以及对壁上富磁铁矿渣层形成的影响。以前的实验和数学工作的结果(第一部分和第二部分)用于使用固定网格模型从高粘度液体中数学描述炉壁上的冻结层。通过粘性活化能以及固相线和液相线温度的影响来考虑炉渣的化学成分。结果表明,在高粘度区域,流动模式受到很大影响。讨论了耐火材料上的热通量及其对冷却系统设计的影响。

著录项

  • 作者

    Guevara, Fernando.;

  • 作者单位

    McMaster University (Canada).;

  • 授予单位 McMaster University (Canada).;
  • 学科 Engineering Metallurgy.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 冶金工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号