首页> 外文学位 >Nonlinear dependence and extremes in hydrology and climate.
【24h】

Nonlinear dependence and extremes in hydrology and climate.

机译:水文和气候方面的非线性依赖性和极端性。

获取原文
获取原文并翻译 | 示例

摘要

The presence of nonlinear dependence and chaos has strong implications for predictive modeling and the analysis of dominant processes in hydrology and climate. Analysis of extremes may aid in developing predictive models in hydro-climatology by giving enhanced understanding of processes driving the extremes and perhaps delineate possible anthropogenic or natural causes. This dissertation develops and utilizes different set of tools for predictive modeling, specifically nonlinear dependence, extreme, and chaos, and tests the viability of these tools on the real data. Commonly used dependence measures, such as linear correlation, cross-correlogram or Kendall's tau, cannot capture the complete dependence structure in data unless the structure is restricted to linear, periodic or monotonic. Mutual information (MI) has been frequently utilized for capturing the complete dependence structure including nonlinear dependence. Since the geophysical data are generally finite and noisy, this dissertation attempts to address a key gap in the literature, specifically, the evaluation of recently proposed MI-estimation methods to choose the best method for capturing nonlinear dependence, particularly in terms of their robustness for short and noisy data. The performance of kernel density estimators (KDE) and k-nearest neighbors (KNN) are the best for 100 data points at high and low noise-to-signal levels, respectively, whereas KNN is the best for 1000 data points consistently across noise levels. One real application of nonlinear dependence based on MI is to capture extrabasinal connections between El Nino-Southern Oscillation (ENSO) and river flows in the tropics and subtropics, specifically the Nile, Amazon, Congo, Parana, and Ganges rivers which reveals 20-70% higher dependence than those suggested so far by linear correlations. For extremes analysis, this dissertation develops a new measure precipitation extremes volatility index (PEVI), which measures the variability of extremes, is defined as the ratio of return levels. Spatio-temporal variability of PEVI, based on the Poisson-generalized Pareto (Poisson-GP) model, is investigated on weekly maxima observations available at 2:50 grids for 1940-2004 in South America. From 1965-2004, the PEVI shows increasing trends in few parts of the Amazon basin and the Brazilian highlands, north-west Venezuela including Caracas, north Argentina, Uruguay, Rio De Janeiro, Sao Paulo, Asuncion, and Cayenne. Catingas, few parts of the Brazilian highlands, Sao Paulo and Cayenne experience increasing number of consecutive 2- and 3-days extremes from 1965-2004. This dissertation also addresses the ability to detect the chaotic signal from a finite time series observation of hydrologic systems. Tests with simulated data demonstrate the presence of thresholds, in terms of noise to chaotic-signal and seasonality to chaotic-signal ratios, beyond which the set of currently available tools is not able to detect the chaotic component. Our results indicate that the decomposition of a simulated time series into the corresponding random, seasonal and chaotic components is possible from finite data. Real streamflow data from the Arkansas and Colorado rivers do not exhibit chaos. While a chaotic component can be extracted from the Arkansas data, such a component is either not present or can not be extracted from the Colorado data.
机译:非线性相关性和混沌的存在对预测模型以及水文学和气候中主要过程的分析具有重要意义。对极端事件的分析可以通过加深对驱动极端事件的过程的了解,并可能勾勒出可能的人为或自然原因,有助于发展水文气候预测模型。本文开发并利用了不同的工具进行预测建模,特别是非线性相关性,极端和混沌,并在实际数据上测试了这些工具的可行性。除非线性结构,线性或周期性或单调性,否则常用的相关性度量(例如线性相关性,互相关图或Kendall的tau)无法捕获数据中的完整相关性结构。互信息(MI)经常用于捕获包括非线性依赖性在内的完整依赖性结构。由于地球物理数据通常是有限且嘈杂的,因此本文试图解决文献中的一个关键空白,特别是对最近提出的MI估计方法进行评估,以选择捕获非线性依赖关系的最佳方法,特别是对于它们的鲁棒性而言。简短而嘈杂的数据。内核密度估计器(KDE)和k最近邻(KNN)的性能分别在高和低噪声到信号水平下对于100个数据点而言是最佳的,而KNN对于在整个噪声水平下一致地对1000个数据点而言是最佳的。基于MI的非线性依赖的一种实际应用是捕获厄尔尼诺-南方涛动(ENSO)与热带和亚热带的河流流量之间的基底外联系,特别是尼罗河,亚马逊河,刚果河,巴拉那河和恒河,揭示了20-70 %的依赖性比到目前为止线性相关的建议高。为了进行极端分析,本文提出了一种新的测量极端降水波动性指数(PEVI)的方法,该指数用于衡量极端波动性,其定义为收益率。基于Poisson广义Pareto(Poisson-GP)模型,对PEVI的时空变异性进行了调查,研究了南美地区1940-2004年在2:50网格上可获得的每周最大观测值。从1965年至2004年,PEVI在亚马孙河流域和巴西高地,委内瑞拉西北部(包括加拉加斯,阿根廷北部,乌拉圭,里约热内卢,圣保罗,亚松森和卡宴)的部分地区呈上升趋势。从1965年至2004年,圣保罗和卡宴(Cayenne)是巴西高地的少数地区,经历了连续2天和3天的极端活动。本文还讨论了从水文系统的有限时间序列观测中检测混沌信号的能力。使用模拟数据进行的测试表明,在噪声与混沌信号的比率以及季节性与混沌信号的比率方面存在阈值,超过该阈值,当前可用的工具集将无法检测到混沌分量。我们的结果表明,可以从有限数据中将模拟时间序列分解为相应的随机,季节性和混沌分量。来自阿肯色州和科罗拉多河的实际流量数据没有显示混乱。尽管可以从阿肯色州数据中提取出混沌成分,但这种成分要么不存在,要么无法从科罗拉多州数据中提取。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号