首页> 外文学位 >Photonic crystal-based wavelength-division demultiplexing using alternating-defect coupled-cavity waveguides.
【24h】

Photonic crystal-based wavelength-division demultiplexing using alternating-defect coupled-cavity waveguides.

机译:使用交替缺陷耦合腔波导的基于光子晶体的波分复用。

获取原文
获取原文并翻译 | 示例

摘要

Photonic crystals (PhCs) offer precise control over light propagation on a microscopic scale because of the unique properties of the photonic band gap (PBG). Various PhC-based wavelength-division demultiplexers (WDDMs) utilizing different coupling methods to separate individual wavelength signals have recently been reported. These devices are above an order of magnitude more compact than conventional WDDMs such as arrayed-waveguide gratings, and may be implemented in photonic integrated circuits for telecommunication applications. However, the quality of performance attributed to these PhC WDDMs has generally been limited, particularly with respect to spectral characteristics and demultiplexed channel counts.; A novel variety of PhC coupled-cavity waveguide, which we have designed and designated an alternating-defect coupled-cavity waveguide (AD-CCW), features a channel drop filter-induced coupling mechanism to reduce eigenmode splitting and effect very narrow spectral linewidth transmission. Four- and six-channel demultiplexers incorporating AD-CCWs have been designed based on two-dimensional PhC slabs perforated by a triangular lattice of air holes, and are analyzed. Finite-difference time-domain (FDTD) simulations evidence relatively uniform transmission peaks at around 1.55 mum that exhibit ∼1 nm linewidths, with spectral resolution of 275 GHz or ∼2 nm (tunable through varying relative AD-CCW dimensions) demonstrated by the 6-channel device. Additionally, investigation and foundational modeling results are included of a vertically-oriented multilayer PhC resonant cavity structure designed to utilize PBG effects to provide lateral optical confinement for both transverse (betaz = 0) and out-of-plane modal propagation, for application in quantum well modulators.
机译:由于光子带隙(PBG)的独特特性,光子晶体(PhC)可以在微观尺度上精确控制光的传播。最近已经报道了各种使用不同耦合方法来分离单个波长信号的基于PhC的波分复用器(WDDM)。这些设备比诸如阵列波导光栅的传统WDDM更紧凑一个数量级,并且可以在用于电信应用的光子集成电路中实现。但是,归因于这些PhC WDDM的性能质量通常受到限制,特别是在频谱特性和解复用的信道数方面。我们设计并指定了一种交替缺陷耦合腔波导(AD-CCW)的新型PhC耦合腔波导,其特征在于采用了通道下降滤波器引起的耦合机制,以减少本征模分裂并实现非常窄的光谱线宽传输。结合AD-CCW的四通道和六通道解复用器,是基于二维PhC平板设计的,该平板由气孔的三角形格子打孔,并进行了分析。有限差分时域(FDTD)仿真表明在1.55微米左右有相对均匀的传输峰,表现出约1 nm的线宽,光谱分辨率为275 GHz或〜2 nm(可通过变化的相对AD-CCW尺寸进行调节),由6通道设备。此外,研究和基础建模结果包括垂​​直定向的多层PhC谐振腔结构,该结构旨在利用PBG效应为横向(betaz = 0)和平面外模态传播提供横向光学限制,以用于量子调制器。

著录项

  • 作者

    Zeller, John W.;

  • 作者单位

    University of Connecticut.;

  • 授予单位 University of Connecticut.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号