首页> 外文学位 >Development and application of a random lung model for dose calculations in radiotherapy.
【24h】

Development and application of a random lung model for dose calculations in radiotherapy.

机译:放射治疗剂量计算的随机肺模型的开发和应用。

获取原文
获取原文并翻译 | 示例

摘要

Radiotherapy requires accurate dose calculations in the human body, especially in disease sites with large variations of electron density in neighboring tissues, such as the lung. Currently, the lung is modeled by a voxelized geometry interpolated from computed tomography (CT) scans to various resolutions. The simplest such voxelized lung, the atomic mix model, is a homogenized whole lung with a volume-averaged bulk density. However, according traditional transport theory, even the relatively fine CT voxelization of the lung is not valid, due to the extremely small mean free path (MFP) of the electrons.; The purpose of this thesis is to study the impact of the lung's heterogeneities on dose calculations in lung treatment planning. We first extend the traditional atomic mix theory for charged particles by approximating the Boltzmann equation for electrons to its Fokker-Planck (FP) limit, and then applying a formal asymptotic analysis to the BFP equation. This analysis raises the length scale for homogenizing a heterogeneous medium from the electron mean free path (MFP) to the much larger electron transport MFP. Then, using the lung's anatomical data and our new atomic mix theory, we build a realistic 2 1/2-D random lung model. The dose distributions for representative realizations of the random lung model are compared to those from the atomic mix approximation of the random lung model, showing that significant perturbations may occur with small field sizes and large lung structures. We also apply our random lung model to a more realistic lung phantom and investigate the effect of CT resolutions on lung treatment planning. We show that, compared to the reference 1 x 1 mm2 CT resolution, a 2 x 2 mm2 CT resolution is sufficient to voxelize the lung, while significant deviations in dose can be observed with a larger 4 x 4 mm 2 CT resolution. We use the Monte Carlo method extensively in this thesis, to avoid systematic errors caused by inaccurate heterogeneity corrections that occur in approximate clinical dose calculation methods.; Finally, we address potential improvements for our random lung model and some possible future applications.
机译:放射疗法需要在人体中进行准确的剂量计算,尤其是在邻近组织(例如肺)中电子密度变化较大的疾病部位。当前,肺是通过从计算机断层扫描(CT)扫描内插到各种分辨率的体素化几何模型进行建模的。最简单的此类体素化肺是原子混合模型,是具有体积平均体积密度的均质化全肺。但是,根据传统的传输理论,由于电子的平均自由程(MFP)非常小,因此即使肺部相对精细的CT体素化也无效。本文的目的是研究肺部异质性对治疗计划中剂量计算的影响。我们首先通过将电子的玻尔兹曼方程逼近其Fokker-Planck(FP)极限来扩展带电粒子的传统原子混合理论,然后将正式的渐近分析应用于BFP方程。该分析提出了将均质介质从电子平均自由路径(MFP)均匀化为更大的电子传输MFP的长度尺度。然后,使用肺部的解剖数据和新的原子混合理论,我们建立了一个逼真的2 1 / 2-D随机肺部模型。将用于随机肺模型的代表性实现的剂量分布与来自随机肺模型的原子混合近似的剂量分布进行了比较,表明在较小的视野大小和较大的肺结构下可能会发生明显的扰动。我们还将随机肺部模型应用于更真实的肺部体模,并研究CT分辨率对肺部治疗计划的影响。我们显示,与参考的1 x 1 mm2 CT分辨率相比,2 x 2 mm2 CT分辨率足以使肺体素化,而在较大的4 x 4 mm 2 CT分辨率下可以观察到剂量的明显偏差。在本文中我们广泛使用蒙特卡洛方法,以避免由于近似临床剂量计算方法中发生的不正确的异质性校正而导致的系统错误。最后,我们讨论了随机肺模型的潜在改进以及将来可能的一些应用。

著录项

  • 作者

    Liang, Liang.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Nuclear.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 240 p.
  • 总页数 240
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子能技术 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号