首页> 外文学位 >Determination of material properties for use in FEM simulations of machining and roller burnishing.
【24h】

Determination of material properties for use in FEM simulations of machining and roller burnishing.

机译:确定用于机械加工和辊抛光的FEM模拟的材料性能。

获取原文
获取原文并翻译 | 示例

摘要

In machining, Finite Element Method (FEM) simulation is used widely to analyze the effect of process conditions and tool edge design upon cutting variables. Thus, it is possible to investigate material machinability, process economics, and surface quality. One of the most crucial inputs in performing a reliable FEM simulation is the availability of material plastic properties. Special material testing methods are required to consider the high ranges of plastic strain, strain rate and temperature that occur in practical machining conditions (for strain rates up to 106 s-1 and temperatures up to 103 °C). Conventional material testing methods are not suitable.; Roller burnishing is a surface finishing process where a ceramic ball (3-12 mm in diameter) freely rolls on the machined surface under a high pressure and flattens the roughness peaks. The ball is hydrostatically supported and lubricated by the pressure fluid. The process improves surface finish, increases microhardness and induces compressive residual stresses on the surface. To implement FEM simulation of roller burnishing process, the flow stress properties of the machined surface layer must be known. Such surface layer properties could be significantly different from the substrate (bulk) material due to severe plastic deformation and possible phase transformation caused by prior machining operations. In this study, two approaches to determine the flow stress data are proposed.; (a) The orthogonal slot milling tests to determine the flow stress at high strains, strain-rates and temperatures. (b) An inverse analysis in conjunction with the ball indentation test to determine the flow stress at the surface layer of a part but at low strain rates and room temperatures.; Furthermore, 2D and 3D FEM models were established by considering the flow stress properties obtained from the proposed procedures in order to analyze two problems: (1) effect of tool edge preparation and flank wear on burr formation in face milling of an aluminum alloy and (2) effect of roller burnishing parameters upon surface finish and residual stresses. Results from FEM simulations were compared and validated with the experimental data.
机译:在加工中,有限元方法(FEM)模拟被广泛用于分析工艺条件和刀刃设计对切削变量的影响。因此,可以研究材料的机械加工性,工艺经济性和表面质量。在执行可靠的FEM仿真中,最关键的输入之一就是材料塑性特性的可用性。需要特殊的材料测试方法来考虑在实际加工条件下产生的高塑性应变,应变速率和温度范围(应变速率高达106 s-1和温度高达103°C)。常规材料测试方法不适合。辊抛光是一种表面精加工过程,其中,陶瓷球(直径3-12毫米)在高压下自由地在加工过的表面上滚动,并使粗糙度峰变平。球由压力流体静液压支撑和润滑。该工艺改善了表面光洁度,增加了显微硬度,并在表面上产生了压缩残余应力。为了进行辊抛光过程的有限元模拟,必须知道机加工表面层的流应力特性。由于严重的塑性变形和由先前的加工操作引起的可能的相变,这种表面层特性可能与基底(本体)材料明显不同。在这项研究中,提出了两种确定流动应力数据的方法。 (a)正交槽铣测试,以确定在高应变,应变速率和温度下的流应力。 (b)结合球压痕测试进行逆分析,以确定零件表层但在低应变速率和室温下的流应力;此外,通过考虑从建议的程序中获得的流应力特性来建立2D和3D有限元模型,以分析两个问题:(1)刀具刃口准备和侧面磨损对铝合金平面铣削中毛刺形成的影响,以及( 2)滚筒抛光参数对表面光洁度和残余应力的影响。有限元模拟的结果进行了比较,并与实验数据进行了验证。

著录项

  • 作者

    Sartkulvanich, Partchapol.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 263 p.
  • 总页数 263
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号