首页> 外文学位 >Modeling microtubule dynamic instability.
【24h】

Modeling microtubule dynamic instability.

机译:模拟微管动态不稳定性。

获取原文
获取原文并翻译 | 示例

摘要

Microtubules are non-covalent polymers important for many processes such as vesicle trafficking and establishment of cell polarity and essential for cell division. A key property of microtubules is that they are highly dynamic. Microtubules constantly switch between phases of growth and shortening. This behavior is called dynamic instability. Although the importance of dynamic instability is well established from a cell-biological point of view, its regulation and mechanistic details are poorly understood. This doctoral thesis summarizes an effort to better understand dynamic instability by means of an interdisciplinary approach. The opening chapter presents an overview of microtubule dynamics and its pending questions. Then, an introduction to stochastic modeling in biology is presented for readers of diverse background. The dynamics of the microtubule network is then studied with a model at a mesoscopic scale (coarse grain) and a model at a microscopic scale (fine details). The mesoscopic modeling results indicate that many behaviors thought to require regulatory proteins are instead unavoidable outcomes of the physical constraints on a system of nucleated polymers competing in a confined space. This suggests that regulatory proteins tune microtubule dynamics rather than govern it. This conclusion has important evolutionary implications as microtubules are present in all eukaryotes and therefore their underlying mechanistic principles must be robust. The microscopic model is the first one built Ivan Gregoretti at a the dimer scale to recapitulate dynamic instability. With this model, the mechanistic details of the once paradoxical microtubule dilution experiments are shown. As opposed to the canonical view, the microscopic model indicates that interprotofilament cracks are always present, even when the microtubule is growing, and it also indicates that there is GTP-tubulin binding to the shortening microtubule. Quantitative analysis concludes that it is the relationship between the lengths of cracks and the GTP cap what dictates microtubule dynamics, not the GTP cap alone. With its simulation speed and level of detail, the microscopic scale model finally opens the door to testing hypotheses of the mechanisms used by microtubule regulatory proteins.
机译:微管是非共价聚合物,对许多过程(例如囊泡运输和细胞极性的建立)很重要,并且对细胞分裂至关重要。微管的关键特性是它们是高度动态的。微管不断地在生长和缩短的阶段之间切换。这种行为称为动态不稳定性。尽管从细胞生物学的角度已经很好地确定了动态不稳定性的重要性,但对其调节作用和机理细节却知之甚少。该博士论文总结了通过跨学科方法更好地理解动态不稳定的努力。第一章概述了微管动力学及其尚待解决的问题。然后,为不同背景的读者介绍了生物学中的随机建模介绍。然后用介观尺度的模型(粗粒)和微观尺度的模型(精细细节)研究微管网络的动力学。介观模型的结果表明,许多被认为需要调节蛋白的行为是在有限空间中竞争的有核聚合物系统上物理约束不可避免的结果。这表明调节蛋白调节微管动力学而不是支配它。由于所有真核生物中均存在微管,因此该结论具有重要的进化意义,因此其基本机理必须牢固。微观模型是第一个以二聚体规模构建的Ivan Gregoretti,用以概括动态不稳定性。使用该模型,显示了曾经自相矛盾的微管稀释实验的机械细节。与规范视图相反,微观模型表明,即使微管在生长,protofilafilamental裂纹始终存在,它还表明GTP微管蛋白绑定到缩短的微管。定量分析得出的结论是,决定微管动力学的是裂纹长度和GTP上限之间的关系,而不是单独的GTP上限。凭借其仿真速度和详细程度,微观尺度模型终于为测试微管调节蛋白所用机制的假设打开了大门。

著录项

  • 作者

    Gregoretti, Ivan.;

  • 作者单位

    University of Notre Dame.;

  • 授予单位 University of Notre Dame.;
  • 学科 Chemistry Biochemistry.; Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

  • 入库时间 2022-08-17 11:39:01

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号