首页> 外文学位 >Electrospun nanoscale polymer fibers and their biomedical applications.
【24h】

Electrospun nanoscale polymer fibers and their biomedical applications.

机译:电纺纳米级聚合物纤维及其生物医学应用。

获取原文
获取原文并翻译 | 示例

摘要

Electrospinning has been emerging as a novel nanofabrication technology to prepare continuous one-dimensional (1D) nanostructurc materials, which have found numerous applications in advanced nanocomposites and biomedical engineering.; In this dissertation, electrospun polystyrene (PS) nanocomposite fibers incorporated with nanofillers such as organoclay and carbon nanotubes (CNTs) have been successfully fabricated with controllable diameters from 50 nm to 5 mum. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to characterize the interior structure and the surface morphology of electrospun PS nanocomposite fibers. TEM micrographs demonstrated that the high shear force coupled with the rapid evaporation of the organic solvent during the electrospinning process results in the alignment of nanofillers parallel to the fiber axis direction. Shear Modulation Force Microscopy (SMFM) and an AFM based three-point bending measurement were utilized to investigate the glass transition temperature (Tg) and Young's modulus (E) of an individual electrospun fiber as a function of the fiber diameter and the nanofiller concentration. In the absence of nanofillers, no change in Tg was observed, even though a large increase of shear modulus below Tg was found, which is postulated to result from the molecular chain orientation during the electrospinning process. The incorporation of nanofillers in the fiber matrix significantly enhances the Tg of PS nanocomposite fibers, which can be attributed to the reduced mobility of molecular chains locally in contact with nanofillers. AFM three-point bending tests showed that the existence of nanofillers in the fiber matrix further increases the Young's modulus of the electrospun fibers especially when the fiber diameter is less than 250 nm.; To study the biomedical application of electrospun polymer nanofibers, a Hyaluronic acid (HA) derivative, 3,3-dithiobis(propanoic dihydrazide)-modified HA (HA-DTPH), was introduced to fabricate a three-dimensional (3D) nanofibrous scaffold. A homobifunctional cross-linker, Poly (ethylene glycol)-diacrylate (PEGDA), was selected to form cross-linked HA-DTPH nanofibers, which retained a fibrillar structure after hydration. The cross-linking reaction occurred simultaneously during the electrospinning process using a dual-syringe mixing technique. Poly(ethylene oxide) (PEO) was added into the spinning solution as a viscosity modifier to facilitate the fiber formation and was selectively removed with water after the electrospinning process. The nanofibrous structure of the electrospun HA scaffold was well preserved after hydration with an average fiber diameter of 110 nm. Cell morphology study on fibronectin (FN)-adsorbed HA nanofibrous scaffolds showed that the NIH 3T3 fibroblasts migrated into the scaffold via the nanofibrous network structure, demonstrating elaborate 3D dendritic morphologies within the scaffold, which reflect the dimensions of the electrospun HA nanofibers. These results suggest the application of electrospun HA nanofibrous scaffolds as a potential material for cell encapsulation and tissue regeneration.
机译:电纺丝作为一种新型的纳米加工技术已经出现,可以制备连续的一维(1D)纳米结构材料,在先进的纳米复合材料和生物医学工程中已发现了许多应用。本论文成功地制备了掺有纳米填料如有机粘土和碳纳米管(CNTs)的电纺聚苯乙烯(PS)纳米复合纤维,其直径可控制在50nm至5μm之间。透射电子显微镜(TEM),扫描电子显微镜(SEM)和原子力显微镜(AFM)用于表征电纺PS纳米复合纤维的内部结构和表面形态。 TEM显微照片表明,高剪切力与静电纺丝过程中有机溶剂的快速蒸发相结合,导致纳米填料的排列平行于纤维轴方向。剪切调制力显微镜(SMFM)和基于AFM的三点弯曲测量被用来研究单个电纺纤维的玻璃化转变温度(Tg)和杨氏模量(E)与纤维直径和纳米填料浓度的关系。在不存在纳米填料的情况下,即使发现剪切模量大大低于Tg,也未观察到Tg的变化,这被认为是由于电纺过程中分子链的取向所致。在纤维基质中掺入纳米填料可显着提高PS纳米复合纤维的Tg,这可归因于与纳米填料接触的局部分子链迁移率降低。 AFM三点弯曲试验表明,纤维基质中纳米填料的存在进一步增加了电纺纤维的杨氏模量,特别是当纤维直径小于250 nm时。为了研究电纺聚合物纳米纤维的生物医学应用,引入了透明质酸(HA)衍生物3,3-二硫代双(丙二酰丙二酰丙氨酸)改性的HA(HA-DTPH),以制造三维(3D)纳米纤维支架。选择一种同双功能交联剂,聚(乙二醇)-二丙烯酸酯(PEGDA)形成交联的HA-DTPH纳米纤维,该纤维在水合后保留原纤维结构。使用双注射器混合技术在电纺过程中同时发生交联反应。将聚环氧乙烷(PEO)作为粘度调节剂添加到纺丝溶液中,以促进纤维形成,并在电纺丝工艺后用水选择性除去。水合后,静电纺丝HA支架的纳米纤维结构得到了很好的保存,平均纤维直径为110 nm。对纤连蛋白(FN)吸附的HA纳米纤维支架的细胞形态研究表明,NIH 3T3成纤维细胞通过纳米纤维网络结构迁移到支架中,显示了支架内精细的3D树突形态,反映了电纺HA纳米纤维的尺寸。这些结果表明静电纺丝HA纳米纤维支架作为细胞封装和组织再生的潜在材料的应用。

著录项

  • 作者

    Ji, Yuan.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Chemistry Polymer.; Engineering Biomedical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);生物医学工程;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号