首页> 外文学位 >An ex-situ and in-situ evaluation of carbides as potential electrocatalysts.
【24h】

An ex-situ and in-situ evaluation of carbides as potential electrocatalysts.

机译:碳化物作为潜在电催化剂的原位和原位评估。

获取原文
获取原文并翻译 | 示例

摘要

One of the most prominent challenges facing the commercialization of the direct methanol fuel cell (DMFC) is the high cost of its electrocatalyst components, particularly the anode. The anode typically requires a high loading of precious metal electrocatalyst (Pt-Ru) to obtain a useful amount of electrical energy from the electrooxidation of methanol (CH3OH). The complete electrooxidation of methanol on these catalysts produces strongly adsorbed CO on the surface, which reduces the activity of Pt. The presence of Ru in these electrocatalysts assists with the decomposition of H2O to more efficiently remove the poisoning CO species as CO2(g). The primary disadvantage of these electrocatalyst components is the scarcity and consequently high price of both Pt and Ru.; A series of surface science studies ultrahigh vacuum (UHV) have identified molybdenum and tungsten carbide materials as potential alternative DMFC anode electrocatalysts. Both of these materials demonstrated activity towards the decomposition of methanol and water molecules. The purpose of this research was to extend these investigations by the synthesis and characterization of more realistic carbide materials. This was accomplished by a combination of surface science and electrochemical experiments. The electrochemical studies were performed both in-situ and ex-situ in order to better address the "materials gap" and "pressure gap" that often separate findings in UHV studies from results in more realistic environments.; Thin film surfaces of molybdenum carbide could be produced on various carbon substrates in a vacuum system by physical vapor deposition (PVD). When modified with low coverages of Pt, MoC phase molybdenum carbides were found to be more active towards the electrooxidation of hydrogen in an acidic electrolyte than Ptmodified carbon substrates in cyclic voltammetry (CV) studies. These surfaces demonstrated a limited range of electrochemical stability in this acid solution. Mo2C surfaces have previously shown hydrogen electrooxidation activity, but demonstrated a nearly identical stability range to MoC in an identical electrolyte. Within these stable ranges of operation, neither surface demonstrated activity towards methanol electrooxidation. These surfaces are also found to undergo rapid decomposition at higher operating potentials, which could be disadvantageous for use in DMFC's.; Despite these findings for molybdenum carbides, in-situ CV studies reveal that tungsten monocarbides (WC) show significant activity towards methanol oxidation in acidic solution and a larger range of stability. Steady-state Chronoamperometry (CA) measurements show an enhanced performance for methanol electrooxidation on WC and sub-monolayer Pt-modified WC surfaces by comparison with Pt surfaces. Surface science studies demonstrate that the WC and Pt-modified WC surfaces remained stable during the CA measurements.; To further bridge the materials and pressure gaps mentioned earlier, polycrystalline thin films of WC were synthesized on various carbon substrates commonly used in fuel cell applications. The activity of WC and Pt-modified WC PVD films surfaces towards methanol and adsorbed CO species in ex-situ CV experiments enabled a discussion of the advantages and limitations of the WC electrocatalyst when produced using larger scale synthesis methods. To further aid this investigation, WC nanomaterials with and without Pt-modification were integrated as the anode electrocatalyst in DMFC devices. These fuel cells were used in a preliminary study to identify the most basic performance characteristics of the anode. Additionally, these findings motivate a discussion of the relative ease with which WC-based electrocatalysts may be integrated into fuel cells using proven fabrication techniques.
机译:直接甲醇燃料电池(DMFC)的商业化面临的最突出挑战之一是其电催化剂组分,特别是阳极的高成本。阳极通常需要高负载的贵金属电催化剂(Pt-Ru),才能从甲醇(CH3OH)的电氧化中获得有用量的电能。甲醇在这些催化剂上的完全电氧化会在表面上产生强烈吸附的CO,从而降低Pt的活性。这些电催化剂中Ru的存在有助于H2O的分解,从而更有效地去除中毒的CO物种,如CO2(g)。这些电催化剂组分的主要缺点是Pt和Ru的稀缺性,因此价格很高。一系列表面科学研究超高真空(UHV)已将钼和碳化钨材料确定为潜在的替代DMFC阳极电催化剂。这两种材料均表现出对甲醇和水分子分解的活性。这项研究的目的是通过合成和表征更现实的碳化物材料来扩展这些研究。这是通过表面科学和电化学实验相结合来完成的。电化学研究是在原地和非原位进行的,以便更好地解决“材料间隙”和“压力间隙”,它们通常将超高压研究中的发现与更现实的环境中的结果区分开。碳化钼的薄膜表面可以通过物理气相沉积(PVD)在真空系统中的各种碳基材上生产。当用低Pt覆盖率进行改性时,在循环伏安法(CV)研究中,发现MoC相碳化钼对酸性电解质中氢的电氧化活性比Pt改性碳基质高。这些表面在该酸性溶液中显示出有限的电化学稳定性范围。 Mo2C表面先前已显示出氢电氧化活性,但在相同的电解质中显示出与MoC几乎相同的稳定性范围。在这些稳定的操作范围内,两个表面均未表现出对甲醇电氧化的活性。还发现这些表面在较高的工作电势下会迅速分解,这对于DMFC的使用可能是不利的。尽管对碳化钼有这些发现,但原位CV研究表明,单碳化钨(WC)对酸性溶液中的甲醇氧化具有显着的活性,并具有更大的稳定性。稳态计时安培(CA)测量显示,与Pt表面相比,WC和亚单层Pt改性WC表面上甲醇电氧化的性能增强。表面科学研究表明,在CA测量期间,WC和Pt改性的WC表面保持稳定。为了进一步弥补前面提到的材料和压力差,在燃料电池应用中常用的各种碳基材上合成了WC的多晶薄膜。在异位CV实验中,WC和Pt修饰的WC PVD膜表面对甲醇和吸附的CO物种的活性使我们能够讨论使用较大规模的合成方法生产WC电催化剂的优缺点。为了进一步帮助该研究,将具有和不具有Pt改性的WC纳米材料集成为DMFC装置中的阳极电催化剂。这些燃料电池在初步研究中用于确定阳极的最基本性能特征。此外,这些发现促使人们对使用经证明的制造技术将基于WC的电催化剂整合到燃料电池中的相对简便性进行讨论。

著录项

  • 作者

    Weigert, Erich.;

  • 作者单位

    University of Delaware.$bDepartment of Materials Science and Engineering.;

  • 授予单位 University of Delaware.$bDepartment of Materials Science and Engineering.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号