首页> 中文学位 >基于聚合物/无机复合体系太阳能电池光伏特性的研究
【6h】

基于聚合物/无机复合体系太阳能电池光伏特性的研究

代理获取

目录

文摘

英文文摘

前言

声明

致谢

1 引言

1.1 太阳能电池的重要性

1.2 太阳能电池的分类

1.2.1 无机太阳能电池

1.2.2 有机太阳能电池

1.3 有机/聚合物太阳电池的工作原理

1.4 有机/聚合物太阳电池特性

1.5 有机/聚合物光伏器件结构

1.6 有机/聚合物光伏器件的材料

1.6.1 电极材料

1.6.2 激活层材料

1.7 有机/聚合物太阳电池的研究重点和发展方向

2 TiO2纳米材料复合聚合物光伏器件的研究

2.1 聚合物MEH—PPV:TiO2纳米管本体异质结器件的研究

2.1.1 器件的制备和测量

2.1.2 器件光伏特性的研究

2.2 聚合物—富勒烯(+TiO2纳米管)本体异质结器件的研究

2.2.1 MEH—PPV:C60(+TiO2纳米管)本体异质结器件的光伏特性

2.2.2 P3HT:PCBM(+TiO2纳米管)本体异质结器件的研究

2.3 本章小结

3 聚合物—富勒烯/无机功能层层间复合结构光伏器件的研究

3.1 MEH—PPV:C60/TiO2双层复合结构光伏器件的研究

3.1.1 MEH—PPV:C60/TiO2层间复合结构器件的制备与测量

3.1.2 MEH—PPV:C60/TiO2层间复合结构光伏器件的研究

3.2. 聚合物—富勒烯/CdS层间复合结构光伏器件的研究

3.2.1 MEH—PPV:C60/CdS层间复合光伏器件的研究

3.2.2 P3HT:PCBM/CdS层间复合光伏器件的研究

3.3 本章小结

4 后处理对聚合物—富勒烯太阳电池光伏特性的影响

4.1 热处理对P3HT:PCBM光伏特性的影响

4.2 反向电压处理对MEH—PPV:C60器件光伏特性的影响

4.3 本章小结

5 Ag/Al复合电极聚合物电池光伏特性的研究

结 论

参考文献

作者简历

展开▼

摘要

近年来,由于有机聚合物太阳能电池的设计性、成本低、重量轻、光吸收率高以及可制备大面积柔性器件等优点,备受人们的关注。然而,目前有机聚合物太阳电池的光电转换效率低下,使之不能商业化、实用化。而制约其转换效率提高的主要因素是:在聚合物中形成的激子束缚能大、激子扩散长度短、载流子迁移率低和电荷在电极处的无效收集。考虑到上述几个方面的原因,在本论文中我们对有机聚合物太阳能电池进行了改进,利用聚合物/无机材料复合体系,对该体系的光伏特性进行了研究。主要的研究内容如下: 1、为了增大聚合物中激子的分离界面、提高载流子的传输几率,我们引入了无机材料-TiO2纳米管,采用ITO/PEDOT:PSS/聚合物:TiO2/Al结构,制备了聚合物/无机TiO2纳米管本体异质结结构光伏器件。研究取得以下结果: (1)ITO/PEDOT:PSS/MEH-PPV:TiO2/Al光伏器件。实验表明,TiO2纳米管的加入增强了器件的光伏特性,并且随着TiO2纳米管混合比例的提高,器件的短路光电流和光电转换效率也相应的提高了。 (2)ITO/PEDOT:PSS/MEH-PPV:C60(+TiO2)/Al光伏器件。器件的光伏特性与TiO2纳米管的浓度紧密相关。适量的TiO2纳米管将有效地连接C60分子,为载流子尤其是电子的传输提供更直接的导带路径,进而提高载流子的传输几率。 (3)ITO/PEDOT:PSS/P3HT:PCBM(+TiO2)/Al光伏器件。SEM电镜显示,TiO2纳米管在薄膜中的分布是无序的,纵向和斜向分布为电子的传输提供了不间断的路径,减少了电子在传输过程中的跳跃次数,提高器件的转换效率;而横向分布的TiO2纳米管则为载流子复合提供了场所,阻碍了载流子的传输,降低器件的转换效率。 2、为了进一步分离载流子的传输路径,减小载流子复合几率,以及加强载流子在电极处的收集效率,我们采用聚合物-富勒烯和无机半导体TiO2以及CdS设计出聚合物-无机半导体层间复合结构光伏器件,并研究了该复合体系器件的光伏特性。 (1)ITO/PEDOT:PSS/MEH-PPV:C60/ TiO2/LiF/Al光伏器件。TiO2层的插入使器件的短路电流和填充因子得到了明显的提高,在光强为16.7mW/c㎡的500nm单色光照射下,器件的短路电流为2.35mA/c㎡,填充因子为0.284,光电转换效率提高了20%。器件的光电转换效率与无机半导体TiO2层的厚度和激活层中MEH-PPV:C60质量比有关,当TiO2层厚度为20nm同时MEH-PPV:C60质量比为2:1时,光电转换效率达到最大值。为了进一步证明器件效率的提高是来自于TiO2层的插入。我们还制备了ITO/PEDOT:PSS/MEH-PPV/TiO2/LiF/Al器件,结果显示器件的短路电流和填充因子提高明显。 (2)ITO/PEDOT:PSS/MEH-PPV:C60/CdS/Al光伏器件。该器件则显示出了显著增大的短路电流,在光强为16.7mW/c㎡的500nm单色光激发下,器件的短路电流达到了4.67mA/c㎡,光电转换效率更是达到了5.3%。显著增大的光电流不仅是由于CdS层的引入改变了器件激活层中载流子的产生和传输区域,CdS层自身对入射光的吸收也是使光电流增大的一个重要因素。同样,器件的效率随无机半导体CdS层的厚度变化产生明显的不同,随CdS层厚度(40-10nm)的减小,器件的光电转换效率提高。 (3)ITO/PEDOT:PSS/P3HT:PCBM/CdS/Al光伏器件。由于CdS的插入改变了器件的串、并联电阻,不仅使器件的光电流和光电转换效率显著增大,而且器件的填充因子也明显得到了加强。 3、为了进一步研究热退火处理对聚合物光伏器件的作用,进一步加强聚合物链在薄膜中的取向作用以及载流子在薄膜中的传输效率,我们一方面研究了热处理对P3HT:PCBM薄膜表面形貌的影响。另一方面利用反向电场对ITO/PEDOT:PSS/MEH-PPV:C60/A1器件进行热退火处理,并对处理后器件的光伏特性进行了研究。 (1)SEM电镜结果表明,热退火处理提高了P3HT:PCBM薄膜的表面粗糙度,而且后处理器件比之前处理器件表面粗糙度的提高更加明显。表面粗糙度的增加将增强入射光在界面处的反射作用,增强入射光在激活层中的吸收,进而提高器件的光电流和转换效率。 (2)在120℃热退火的同时对ITO/PEDOT:PSS/MEH-PPV:C60/Al器件施加一个反向电压的作用,短路电流和光电转换效率提高5倍以上。器件光伏特性的改善来自于薄膜中热动分子沿着外加电压方向的有序分布。同时器件光伏特性与反向电压幅值和退火时间密切相关,采用-6V10min可以使器件的光电转换效率达到最大。 4、为了加强聚合物器件中载流子尤其是电子在阴极处的收集效率,我们采用Ag材料制备了Ag/Al复合电极。Ag/Al复合电极有效地阻止了聚合物与Al电极的接触,防止了Al2O3层的形成,平衡了器件中载流子的传输,提高了器件的填充因子。而且Ag/Al复合电极对激活层还可以起到一定的保护作用,减缓器件光伏特性的衰减过程。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号