首页> 中文学位 >Fabrcation and Characterization of Highly Potent Silver-Organoalkoxysilane Antimicrobial Nanofibers and Antibacterial Studies of Its Components
【6h】

Fabrcation and Characterization of Highly Potent Silver-Organoalkoxysilane Antimicrobial Nanofibers and Antibacterial Studies of Its Components

代理获取

目录

声明

学位论文数据集

Abstract

摘要

TABLE OF CONTENTS

CHAPTER 1 LITERATURE REVIEW

1.1 Introduction

1.2 History of antimicrobial silver

1.3 Antimicrobial action of silver ions

1.4 Development of silver antimicrobial materials

1.5 Polyvinylpyrrolidone(PVP)

1.6 Organoalkoxysilnes compounds

1.6.1 3-aminopropyl trimethoxysilane

1.6.2 Tetraethoxysilane

1.7 Nanotechnology and composite materials

1.8 Nanofibers and Electrospinning

1.9 History of Electrospinning

1.10 Electrospinning apparatus and process

1.11 Factors affecting electrospinning process

1.11.1 Process parameters

1.11.2 Solution parameters

1.11.3 Environmental conditions of the spinning chamber

1.12 Types of Electrospinning

1.12.1 Solution and Melt elcetrospinnings

1.12.2 Nozzle configurations

CHAPTER 2 FABRICATION AND CHARACTERIZATION OF HIGHLY POTENT SIL VER-ORGANOALKOXYSILANE ANTIMICROBIAL NANO FIBER MEMBRANE

2.1 Introduction

2.2 Materials and methods

2.2.1 Materials

2.2.2 Instrumentations

2.2.3 Nano membrane fabrication

2.2.4 Determination of surface amino group density

2.2.5 Silver Ion Release Rate

2.2.6 Antimicrobial tests

2.3 Results and discussion

2.3.1 Fabrication of fibers

2.3.2 Microscopic characterization of fibers

2.3.3 Spectroscopic characterization of fibers

2.3.4 Density of the composite’s surface amino groups

2.3.5 Antimierobial activity of the fibers

2.4 Conclusion

CHAPTER 3 SYNTHESIS OF SILVER NANO PARTICLES USING ORGANOALKOXYSILANES IN PVP

3.1 Introduction

3.2 Materials and methods

3.2.1 Materials

3.2.2 Instrumentations

3.2.3 Methods

3.3 Results and discussions

3.3.1 Color formation

3.3.2 UV-VIS analyses of the colloids

3.3.3 XPS analyses of silver species

3.3.4 Reduction Process

3.3.5 The effect of PVP on the size and shape of silver particles

3.3.6 The effect of organoalkoxysilanes on the size and shape of silver nano particles

3.4 Conclusion

CHAPTER 4 THE ANTIBACTERIAL EFFECT OF 3-AMINOPROPYL TRIMETHOXYSILANE AND ITS MECHANISTIC STUDIES

4.1 Introduction

4.2 Material and Methods

4.2.1 Materials

4.2.2 Culture conditions and preparation of inoculants

4.2.3 Method

4.3 Results and Diseussion

4.3.1 Antibacterial effect of APTMS

4.3.2 Mode of antibacterial action of APTMS

4.4 Conclusion

CHAPTER 5 THE ANTIBACTERIAL EFFECT OF TETRAETHOXYSILANE AND ITS MECHANISTIC STUDIES

5.1 Introduction

5.2 Materials and methods

5.2.1 Materials

5.2.2 Instrumentation

5.2.3 Culture conditions and preparation of inoculants

5.2.4 Method

5.3 Results and discussion

5.3.1 Antibacterial effect of TEOS

5.3.2 Mode of antibacterial action of TEOS

5.4 Conclusion

CHAPTER 6 CONCLUSION

REFERENCES

PUBLICATIONS

ACKNOWLEDGEMENT

展开▼

摘要

本文应用一种简单电纺丝技术由乙醇-硝酸银-聚乙烯吡咯烷酮/(3-氨丙基)三甲氧基硅烷/四乙氧基硅烷(AgNO3-PVP/APTMS/TEOS)溶液构筑了银-有机烷氧基硅烷高潜能抗菌复合膜。经光谱和显微分析表明,该纤维含有机烷氧基硅烷“骨架”,氨基0.18分子/nm2,而且银纳米粒(5nm)呈高分散性和均匀分布。有机烷氧基硅烷掺入抗菌膜好处在于:
   1.APTMS的氨基粘附到微生物上并杀菌。
   2.APTMS和TEOS多聚化形成硅烷键增加膜表面积,且形成具有多孔膜状结构的复合物网膜。
   3.有机烷氧基硅烷也促进了纤维网膜中微小高分散银粒的合成。所构筑的这种膜表现出快速持久广谱杀菌能力,如细菌(大肠杆菌、炭疽杆菌、金黄色葡萄球菌、猪布鲁氏杆菌),真菌(黑曲霉)和新城鸡瘟病毒。前述所测试微生物的MIC仅需0.3mg此种膜。细菌与纤维膜接触30分钟之内就被抑制且膜可重复使用。此纤维膜有可能被用于:空气过滤器,抗微生物镜片、外套、生物粘胶和生物膜上。
   对上述所有构筑的纤维膜包括那些不含银的复合物仔细观察发现它们均有明显抗菌特性,导致了深入研究APTMS和TEOS潜在抗菌活性。结果表明,APTMS对革兰氏阳性和阴性两者均有高毒性。APTMS浓度低到1%在触菌15分钟之内就能抑制大肠杆菌和金黄色葡萄球菌,而且其杀菌能力与浓度有关,20%使用浓度在5分钟之内杀灭所有细菌,其灭菌是因它裂介了菌细胞,该化合物先穿越、渗透入胞,然后溶化解体整个细胞。实验结果还表明,金黄色葡萄球菌比大肠杆菌对毒杀效应似乎有强阻抗能力。
   TEOS杀灭的抗菌机制本质上类似于APTMS。不过其抗菌能力明显低于APTMS,一个重要原因是其与水接触会分解产生SiO2悬浮物。此外其缺少可以粘附细胞灭菌的氨基。
   结果还表明,此法能可控合成纳米银的大小和形状。通过改变APTMS和TEOS的比率,可合成出占绝大部分是球形、方块、蛋形、三角形纳米银。更有趣的是,具有超薄、高透明的圆形纳米银片可由此法得到。除外,不同形状的银微晶有可能适用于制造催化剂、光学镜片、信息存储、微电子和传感器。

著录项

相似文献

  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号