首页> 中文学位 >基于固体氧化物燃料电池应用的基础研究
【6h】

基于固体氧化物燃料电池应用的基础研究

代理获取

目录

声明

摘要

第一章 绪论

1.1 引言:能源与环境

1.2 固体氧化物燃料电池

1.2.1 固体氧化物燃料电池基本工作原理

1.2.2 固体氧化物燃料电池的热力学基础

1.2.3 固体氧化物燃料电池的电化学基础

1.2.4 固体氧化物燃料电池的极化曲线

1.3 固体氧化物燃料电池研究现状及发展趋势

1.3.1 中低温下具有高离子电导率的电解质材料的探索

1.3.2 阴极材料探索及阴极反应过程研究

1.3.3 可直接碳氢燃料的阳极材料的探索

1.4 本论文的选题思路及研究的主要内容

参考文献

第二章 固体氧化物燃料电池的新型阴极材料的设计及性能研究

2.1 研究背景

2.2 实验内容

2.2.1 粉体制备及制备方法概述

2.2.2 样品的表征

2.3 实验结果与讨论

2.3.1 离子电子混合导体的双钙钛矿型LaBaCuMO5+x(M=Fe,Co)阴极性能研究

2.3.2 离子电子混合导体的Sm0.5Sr0.5Fe0.8Cu0.2O3-δ(SSFCu)无钴阴极性能研究

2.3.3 高稳定性SrFe0.9Sb0.1O3-δ(SFSb)无钴阴极性能研究

2.3.4 可忽视的电子电导的NiC3O-SDC复合阴极性能研究

2.4 本章小结

参考文献

第三章 高稳定性铈基电解质电池的制备及性能表征

3.1 引言

3.2 新颖的NiO-BZCY/SDC的电池构型制备及性能表征

3.2.1 实验部分

3.2.2 结果与讨论

3.2.3 小结

3.3 元素扩散方法构造高稳定性电解质LCO的质子导体氧化物燃料电池

3.3.1 研究背景

3.3.2 实验内容

3.3.3 结果讨论与分析

3.3.4 小结

3.4 本章总结

参考文献

第四章 一种直接碳氢燃料的新型阳极材料研究

4.1 背景

4.2 实验内容

4.3 结果分析讨论

4.3.1 物相结构分析

4.3.2 XPS价态分析

4.3.3 电子顺谱共振测试

4.3.4 化学稳定性研究

4.3.5 热收缩性能研究

4.3.6 阳极电导率测试

4.3.7 阳极支撑单电池研究

4.4 本章小节

参考文献

第五章 以Sr0.95Y0.5TiO3+δ-Sm0.2Ce0.8O1.9为燃料极的可逆固体氧化物电池的研究

5.1 引言

5.2 实验部分

5.3 结果与讨论

5.3.1 相结构分析

5.3.2 电子顺谱共振测试

5.3.3 热重分析

5.3.4 电导率测试

5.3.5 化学稳定性表征

5.3.6 高温固体氧化物电解性能表征

5.4 本章小节

参考文献

致谢

攻读博士学位期间发表学术论文目录与取得的研究成果

展开▼

摘要

能源与环境是当今人类社会可持续发展必须面对的两大难题。固体氧化物燃料电池(SOFC)是一种高效清洁的能量转换装置,在节能减排的能源市场大环境中具有广阔的发展潜力。为满足商业化对低成本和长寿命的要求,SOFC的操作温度必须由传统的高温(800-1000℃)向中低温范围(400-800℃)发展。但随着操作温度的降低,中低温SOFC的应用发展面临新的挑战,其中急需解决的重要问题包括:1)传统阴极材料在中低温条件下催化活性低,使电池输出功率较低;2)现有的中温电解质材料在操作条件下存在一定的电子导电现象,造成电池内短路,转换效率低;3)氢气燃料气储存运输困难,不适用作商业化燃料,面传统的阳极材料对碳氢燃料裂解具有高催化活性,易形成碳淀积,导致电池性能骤减。
   针对中低温SOFC的发展需求,本论文将(1)探讨阴极反应过程的关键影响因素,进而研发中低温下具有高催化活性的新型阴极材料;(2)探索发展低成本的电子阻隔层制备技术及发展具有高离子电导率和低电子电导率的新型电解质材料,以解决电池的内短路问题;(3)发展可直接用于碳氢化合物、煤基合成气、生物质气等燃料的新型阳极,降低SOFC的使用成本。本论文的主要内容和结果如下:
   第一章:简单介绍SOFC的研究背景、基本工作原理及国内外研究进展。从材料应用和发展的角度,着重阐述了SOFC实现中低温化发展所面临的重大挑战,并提出了本论文的研究目标及相关内容。
   第二章:针对中低温阴极材料电化学催化活性较低的现象,探索和发展了一系列中低温SOFC阴极材料,如LaBaCuCoO5+x(LBCC)、LaBaCuFeO5+x(LBCF)、Sm0.5Sr0.5Fe0.8Cu0.2O3-δ(SSFCu)、SrFe09Sb0.1O3-δ(SFSb)和Ni0.7Co0.3O(NC3 O)等。研究结果表明:1)Co基掺杂比铁基掺杂具有更好的电化学性能;2)以Cu部分取代Fe,尽管会损失一定的电子电导率,但增加材料的离子电导率,使阴极的电催化性能提高,表明在阴极反应过程中离子电导率的增加对阴极反应具有重要的作用;3)具有抗Cr中毒性能的阴极接触材料Ni0.7CO0.3O(NC3O)可被直接发展成为阴极材料,以BZCYYb为电解质的电池在700℃时最大输出功率为204mWcm-2。
   第三章:针对中低温电解质掺杂CeO2在操作条件下存在一定的电子电导现象,提出一种低成本易实现的原位电子阻隔层制备技术。利用阳极中的Ba源在电池高温烧结成型过程中向铈基电解质层扩散的现象,在电解质/阳极界面处原位反应生成电子阻挡层,从而避免电池的内短路,提高电池的开路电压和燃料利用率。进一步研究发现NiO-BaZr0.1Ce0.7Y0.2O3-δ(NiO-BZCY)对以La2Ce2O7(LCO)电解质的载流子具有一定的影响。形成的BaCeO3基反应层能提高电解质LCO的质子迁移数,使电解质更趋向于质子电导(其电解质的电导活化能为52.51kJmol-1);而以NiO-LCO为阳极的单电池电解质LCO以传导氧离子为主(电解质的电导活化能为95.08 kJmol-1)。
   第四章:传统Ni基阳极直接以碳氢化合物为燃料时易在Ni表面积碳,造成阳极催化活性和机械性能迅速下降,电池系统崩溃。为此,本章设计一种新型抗积碳阳极材料NiTiO3(NTO),该材料可在电池测试过程中NTO原位还原生成Ni-TiO2网状结构。700℃下,以NTO为阳极,SDC为电解质的单电池在甲烷为燃料时具有优异的抗积碳性能,40 h几乎没有衰减,表明还原生成的网状连续结构的Ni-TiO2阳极具有很好的抗积碳性能。通过引入NTO-SDC阳极过渡层进一步优化电池结构,单电池在甲烷燃料下具有优异的电化学性能,最大功率密度达到0.413 Wcm-2(700℃),其欧姆阻抗Rb和极化阻抗Rp分别为0.176和0.064Ωem2。研究结果表明NTO是一种优异的低成本的抗积碳阳极材料。
   第五章:固体氧化物电解池(SOEC)是SOFC的电化学逆过程应用,可用于电网的峰谷调控。根据SOEC中Ni基电极在高温电解过程中出现的问题,本章中提出以钙钛矿型Sr0.95Y0.5TiO3+δ-Sm0.2Ce0.8O1.9直接作为电解池阴极,在SOFC和SOEC下进行对比研究。研究发现:1)XRD精修和电子顺谱共振(EPR)研究结果表明还原后Sr0.95Y0.5TiO3(SYT)结构中具有Ti3+离子的存在;2)SOEC模式下的总电阻均要小于SOFC模式下的总电阻,在SOEC模式下随着加载电压的增加,电池的欧姆电阻略有减小,而极化电阻大幅降低,表明加载电压的增加,有助于改善还原气氛下的SYT的电导率和催化活性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号