首页> 中文学位 >通电聚乙烯导线火蔓延伴随的熔融滴落行为研究
【6h】

通电聚乙烯导线火蔓延伴随的熔融滴落行为研究

代理获取

目录

声明

摘要

第1章 绪论

1.1 研究背景及意义

1.1.1 电气火灾形势

1.1.2 导线火灾研究背景

1.1.3 聚乙烯导线应用背景

1.1.4 导线火灾研究意义

1.2 研究现状

1.2.1 导线火蔓延相关研究

1.2.2 导线着火机理相关研究

1.2.3 热塑性材料熔融滴落相关研究

1.3 研究目标及内容

1.3.1 研究目标

1.3.2 研究内容与技术路线

1.4 章节安排

第2章 通电导线燃烧及熔融滴落理论分析

2.1 通电导线温升模型

2.2 导线燃烧理论模型

2.3 导线熔融滴落频率的理论分析

2.3.1 液体表面张力

2.3.2 液滴体积

2.3.3 熔融滴落频率

2.4 本章小结

第3章 实验设计

3.1 实验装置

3.1.1 通电导线火蔓延实验台

3.1.2 低压燃烧测试舱

3.1.3 视频图像采集系统

3.2 实验样品及实验过程

3.3 相关视频图像处理方法

3.4 本章小结

第4章 通电PE导线火蔓延及熔融滴落实验结果分析

4.1 通电导线的温升

4.1.1 导线温升曲线

4.1.2 导线平衡温度

4.2 熔融滴落的形成过程

4.2.1 通电PE导线的燃烧状况

4.2.2 熔融物的积累与滴落

4.2.2 滴落前后导线火焰形貌变化

4.3 熔融液滴的下落及燃烧

4.3.1 液滴下落过程

4.3.2 液滴在底座上的燃烧与熄灭

4.4 熔融滴落的周期与频率

4.4.1 三种导线的滴落时间

4.4.2 滴落频率与导线过流程度

4.4.3.熔融滴落频率的理论值

4.5 滴落对导线火蔓延的影响规律

4.6 本章小结

第5章 低压环境下通电PE导线的燃烧及熔融滴落

5.1 低压环境下的导线平衡温度

5.2 低压环境下导线火焰形貌及熔融滴落现象

5.2.1 低压环境下的导线火焰形貌

5.2.2 低压环境下的熔融滴落现象

5.3 低压环境下的临界滴落电流

5.3.1 低压临界滴落电流

5.3.2 低压下的特殊实验现象:明亮火焰短时消失后重现

5.3.3.临界滴落电流与环境压力的关系

5.4 低压导线熔融滴落频率及变化趋势

5.4.1 低压导线熔融滴落频率

5.4.2 滴落频率随环境压力的变化趋势

5.4.3 低压导线滴落频率与通电电流的关系

5.5 低压下三种导线的熔融滴落频率

5.6 本章小结

第6章 总结与展望

6.1 工作总结

6.2 创新点

6.3 下一步工作展望

参考文献

致谢

在读期间发表的学术论文与取得的研究成果

展开▼

摘要

随着社会发展和时代进步,人们生活逐渐电气化和智能化。电子电气设备的广泛应用,带来电气火灾事故频繁发生,严重威胁着人们的生命财产安全,受到社会的普遍关注。导线是电气火灾最主要的起火源之一,其中聚乙烯导线因其无卤低烟特性,被广泛应用于人员较集中的场所。开展针对聚乙烯导线防火安全研究具有重要的现实意义。
  导线在通电情况下,由于线芯焦耳热效应,自身持续发热,对紧密包裹的绝缘层起到加热作用。在有火蔓延时,导线下方出现熔融可燃物积聚,并且随火焰传播而发生流动,体积逐渐增大,当积累量超出其表面张力所能维持的最大极限时,就会发生滴落。滴落可以有效扩大燃烧范围,造成火势的迅速发展以及十分严重的后果。本文旨在研究通电聚乙烯导线火蔓延伴随的熔融滴落行为,通过理论分析与实验研究相结合的方法,揭示其产生机理、形成及演变过程、临界条件等,从而深刻认识导线火灾发生发展的过程及规律,为导线火灾的有效防治提供理论依据和数据支撑。
  首先,根据导线燃烧特点,从燃烧学、火灾学、传热传质学等基础理论出发,建立相关理论模型,考察通电导线的温升情况以及达到稳态时的导线平衡温度;从燃烧的质量传递数出发,理论计算出通电导线火蔓延过程中绝缘层的质量燃烧速率;结合导线火蔓延过程,计算得到熔融绝缘物的积累速率;从液滴表面张力出发,推导出发生滴落时的液滴体积,进而得到导线滴落频率的理论表达式。
  其次,选取相同绝缘层厚度、不同线芯直径的铜芯聚乙烯导线作为实验材料,开展常压和低压环境下通电导线火蔓延伴随熔融滴落行为的实验研究。结果表明:熔融滴落的发生,是一种量变引发质变的过程。量变指的是电流增大带来熔融物积累速率加快,质变指的是液滴的形成。较大电流作用下,焦耳热效应使得热塑性绝缘材料处于轻度的热解状态,在火焰辐射作用下绝缘层可很快发生熔融及热解,从而加快了绝缘层的质量损失速率。而绝缘层损失的质量,一部分用于燃烧,一部分形成熔融物。随电流增大,熔融物燃烧速率的有限增幅比不上积累速率的增加,从而导致积累量持续增多。当积累量超出液滴表面张力所能承受的极限,滴落就成为一种必然发生的现象。
  对熔融液滴下落及燃烧过程进行分析,结果表明熔融液滴在下落过程中可以维持一个相对稳定的火焰状态。火焰呈细长的尖锥形,在经过一段距离的下落后,液滴仍然具有较高的温度,具备维持燃烧、甚至点燃其它可燃物的能力。分析液滴下落距离,得到液滴下落过程中的速度及加速度。滴落的发生呈现周期性,结合实验结果,得到不同电流下导线的滴落时间和滴落频率,并且与理论计算结果进行比较。对于线芯横截面较小的导线,其滴落频率与电流的平方呈线性正相关,而且滴落时间随导线平衡温度升高而呈指数递减。此外,滴落对导线火蔓延造成较为明显的影响作用,主要表现为火焰高度在滴落前后发生剧烈跳变,由最大值急速减小到最小值,此后随着熔融物的再次积累增多,火焰高度又重新开始缓慢增长,进入下一个滴落周期。而火焰宽度仅在滴落前后的短暂时间内发生轻微振荡,火蔓延速率几乎不受影响。
  最后,通过开展低压导线燃烧相关实验研究,分析得出火焰辐射减弱带来熔融物热解速率减小是造成低压下滴落速率加快的重要原因。低压下滴落的频繁发生,带来大量的热耗散,造成火焰短时消失、甚至完全熄灭的后果。而且,随着压力的降低,触发滴落所需的电流值减小,滴落更加容易发生。但是这种变化是非线性的,在1.0-0.8atm的阶段,临界滴落电流的变化较小,而在低于0.8atm的阶段,临界滴落电流迅速降低。此外,导线熔融滴落频率随环境压力的降低而增大,尤其是在较大的通电电流作用下,滴落频率随压力降低由线性增长逐渐发展为抛物线性增长。低压下导线熔融滴落与自身平衡温度具有更强的相关性。在较低的环境压力下,不论导线线径大小,其火蔓延时的导线温度越高,熔融物积累直至滴落所需要的时间就越短,滴落频率也越大。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号