首页> 中文学位 >基于磷脂组装体的生物膜及杂化生物材料的制备
【6h】

基于磷脂组装体的生物膜及杂化生物材料的制备

代理获取

目录

第一个书签之前

Chapter1 Introduction

1.1 Background, objective and significance of the study

1.2 The hydrophobic effect of amphiphilic molecules

1.3 Introduction to self-assembly of phospholipids

1.3.1 Phospholipid self-assembly in aqueous solution

1.3.2 Phospholipid self-assembly on solid substrate

1.4 Methods for construction of phospholipid self-assembly

1.4.1 Construction of spherical phospholipid assembly

1.4.2 Construction of non spherical phospholipid assembly

1.4.3 Construction of multi vesicles assemblies

1.4.4 Construction of phospholipid self-assembly on solid substrate

1.5 Main research contents of this subject

Chapter 2. Materials and Methods

2.1 Main raw materials and reagents

2.2 Experimental instrument

2.3.1 Phospholipid charachterization

2.3.2 Carbon nanotubes characterization

2.4.1 Formation of GUVs assembly using electroformation methods

2.4.2 Electroformation of lipid tubes using film paralleling electricfield

2.4.3 Electroformation of double vesicles using AM electric field

2.4.4 Preparation of phospholipid-CNTs hybrids

2.5.1 Fluorescent microscopy test methods

2.5.2 Confocal laser scanning microscopy

2.5.3 Scanning electron microscopy

2.5.4 Diameter determination method

2.6.1 Design of experiments

2.6 Mathematical methods and simulation tools

2.6.2 COMSOL simulation

2.6.3 Solution of Laplace equation for AM electric field on semi spherical shell

Chapter 3. Self-assembly of giant vesicles with controlled size using electroformation

3.1 Introduction

3.2.1 Influence of Electroformation time on GUVs size andPolydispersity Index

3.2.2 Electroformation of GUVs at different electric potentials

3.2.3 Electroformation of GUVs at different frequencies

3.2.4 Electroformation of GUVs at different temperatures

3.3 Matrix Design and models building

3.4 Models validation

3.5.1 Effect of electric potential

3.5.2 Effect of frequency

3.5.3 Effect of temperature

3.5.4 Effect of phospholipid composition

3.6.2 Interaction between temperature-frequency

3.6.3 Interaction between temperature-electric potential

3.7 Summary

Chapter 4. Self-assembly of tubular biomembrane and double vesicles using electroformation

4.1. Introduction

4.2.1 Description of the experimental device

4.2.2 Formation of phospholipid tubes

4.3.1 Influence of electric field strength

4.3.2 Influence of electric field direction on the formation of tubes

4.4 Mechanism of lipid tubes formation4.5 Vesicles electroformation under different wave function

4.6 Validation of the formation of double vesicles

4.7.1 Effect of critical time

4.7.2 Effect of modulated and carrier frequencies

4.7.3 Effect of amplitude depth

4.8 Mechanism of double vesicle formation

4.9 Theoretical aspect of domes elongation into tubes

4.9.1 Calculation of the pulling force under AM electric field

4.9.2 Calculation of the critical force under AM electric field

4.10 Summary

Chapter 5 Self-assembly of phospholipid-CNTs hybrids helical structures

5.1 Introduction

5.2 Size distribution of CNT

5.3 Self-assembly of neutral phospholipids on long CNTs

5.4.2 Self-assembly of charged phospholipid on medium CNTs

5.4.3 Self-assembly of charged phospholipid on long CNTs

5.5 Formation mechanism of phospholipid@CNTs helical structures

5.6 Effect of phospholipid/CNTs mass ratio on the formation of springs

5.7 Summary

Conclusion

Innovative points of this thesis

Perspectives

参考文献

List of publications

声明

致谢

Resume

展开▼

著录项

  • 作者

    Ghellab Salah Eddine;

  • 作者单位

    哈尔滨工业大学;

  • 授予单位 哈尔滨工业大学;
  • 学科 化学工程与技术
  • 授予学位 博士
  • 导师姓名 韩晓军;
  • 年度 2020
  • 页码
  • 总页数
  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类 TQ4TQ1;
  • 关键词

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号