首页> 中文学位 >激光微细熔覆快速制造厚膜无源元件关键技术的研究
【6h】

激光微细熔覆快速制造厚膜无源元件关键技术的研究

代理获取

摘要

目前,电子行业发展的两大主流是小型化和高频化,传统的厚膜技术由于存在着诸多自身的缺陷,已经远远不能满足中快速发展的需求。因此,在当前日趋激烈的竞争环境下,微电子行业迫切需要发展一种能在无掩模的条件下,快速制备出小尺寸,高精度、高稳定、高可靠性的混合电路的新兴技术。而膜式化元件由于是裸露元件的多层空间叠加和集成,尺寸大大地减少。同时,由于元件直接集成在电路上,使得互连短缩化,焊接点数减少,寄生电阻和电路噪声降低,产品成本下降,因此,为了适应更高密度的元件安装和电路的集成,在表面电路或内层电路上形成埋入式膜式元件,不仅具有产品尺寸小型化的特点,而且在不增大基板面积的情况下达到了高密度集成的目的。 在国家自然科学基金及国家“863”高技术发展研究计划项目的资助下,本文提出了激光微细熔覆快速制造厚膜电子元件和混合电路技术,实现了在陶瓷基板上制备外电路、膜式化无源元件(电阻元件、电容元件、电感元件)和集成模块,并系统研究了预置膜的成型原理和导线、电子元件的制备以及集成等关键科学问题,在此基础上研制出预置膜成型Precision Spray系统,并对现有设备进行了改进。本文体现了该项目的部分研究成果,主要研究结果总结如下: 本文率先在国内外提出不需要后续高温烧结工艺,直接采用激光微细熔覆快速制造技术在陶瓷基板上制备了外电路,厚膜电子元件以及集成模块,其制备工艺是采用Precision Spray系统将电子浆料喷绘在所设定的单元并通电烘干预置膜——按照设定的图形进行激光跟踪扫描烘干膜——清洗——扫描的区域被焊接在基板上。并利用该工艺制备了最小图形分辨率为20μm/40μm的极限值,大大地突破了传统厚膜制备技术下的极限值。通过对电子元件和导线的微观形貌、成分、组织的分析、电气和机械性能测试以及界面行为的分析,表明采用该技术制备的电路和电子元件,其性能、结合强度均优于传统工艺,而且不存在不同材料界面成分的扩散,稳定性和可靠性高,再现性好,满足目前电子行业和市场发展的需求。 提出了一种制备预置膜层新技术(Precision Spray),并利用该技术在基板上制备了表面均匀的预置膜。同时,针对所制备的不同电子元件使用的材料不同,系统地研究了不同浆料下浆料特性和预置膜厚度对电子膜层质量和性能的影响,从而为后续激光扫描提供了可能。 系统地研究了预置膜的厚度和激光工艺参数对所制备导线和电子元件的膜厚、宽度、质量、性能的影响规律,并确立了极限扫描速度、极限搭接量和极限功率和离焦量范围内的电子膜厚度和宽度范围,简要地分析了这种极限值存在的原因以及对最终产品质量和性能的影响,求得了大面积扫描下最佳的激光加工参数,导线:预置膜厚度4μm,功率密度1.0x104W/mm2,扫描速度5mm/s,焦点;电阻:预置膜厚度15μm,功率为35Watt,扫描速度3mm/s,两相邻线中心间距为0.05mm,焦点位置;电容:预置膜厚度6μm,离焦量1.5mm,激光加工功率25Watt,扫描速度2mm/s,两相邻线中心间距为0.2mm;电感(介质膜):预置膜厚度4μm,离焦量6.4mm,激光加工功率35Watt,扫描速度3mm/s,两相邻线中心间距为0.01mm。 通过热分析、SEM、EDS和探针等分析技术对激光微细熔覆快速制造厚膜电子元件、导线和传统的烧结工艺下制备的电子元件、导线以及两种技术结合制备的电子元件、导线的微观组织形貌、元素分布、界面行为等相关性进行了系统地研究,并结合试验结果和理论分析,探讨了它们的成膜机理、附着机理和导电机理。研究结果表明:采用激光微细熔覆快速制造技术制备的导线和电子元件比传统烧结工艺制备的导线和电子元件质量高,性能优良,可靠性高,不存在不同材料间的界面成分扩散。而激光直接扫描得到的电子元件,再经过高温烧结工艺,性能质量变差。 本文所研究开发的激光微细熔覆快速制造技术与Precision Spray系统开辟了一种快速、无掩模、高效、高速、高精度的柔性直写新技术。该技术在新品研发和小批量多品种生产单层和多层电路、电子元件、集成模块等场合,比传统工艺方法成本低,效率高,精度和质量高,稳定性好等。此外,该技术还可以用于微型焊接和复杂的特殊功能混合元件的制备等,具有极大的延展性和广阔的应用前景。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号