首页> 中文学位 >油菜素内酯调控棉花对黄萎病菌抗性的生理和生化机制
【6h】

油菜素内酯调控棉花对黄萎病菌抗性的生理和生化机制

代理获取

目录

声明

论文说明

Acknowledgements

Contents

List of Figures

List of Tables

List of Abbreviations

ABSTRACT

摘要

Chapter 1 General Introduction

1.1 Background information

1.2 Project goals

1.3 Specmc objectives

Chapter 2 Literature Review

2.1 Nomenclature and classification of the pathogen

2.2 Pathogenicity determinants of V.dahliae

2.2.1 Infectious structures

2.2.2 Cell wall degrading and hydrolytic enzymes

2.2.3 Phytotoxins and ellcitors

2.3 Plant defense responses

2.3.1 Phenylpropanold metabolism and cell wall fortificcatiOn

2.3.2 Carbohydrate metabollsm and osmoregulation

2.3.3 Induction of pathogenesis-related(PR)proteins

2.3.4 ROS in signal transduction

2.3.5 Nitric oxide(NO)in signal transduction

2.3.6 Network and interplay of signaling pathways

2.4 Management of Verticillium wilt

2.4.1 Biological control

2.4.2 Organic amendments

2.4.3 Resistant germplasm

2.5 Brassinosteroids(BRs)

2.5.1 BR signaling in plants

2.5.2 Ameliorative role of BRs in biotic stresses

2.5.3 Mechanism of brassinosteroid mediated stress tolerance

Chapter 3 Effect of Verticillium dahliae toxin (Vd toxin)on cell structure,plantmorphology and biochemical characteristics of upland cotton

3.1 Materials and methods

3.1.1 Fungus growth and toxin preparation

3.1.2 Plant growth,treatment conditions and measurement of basic nutrition solution(BNS)uptake

3.1.3 Assessment of root dehydmgenase activity

3.1.4 Measurement of chlorophyll fluorescence

3.1.5 Determination of lipid peroxidation,SOD activity and contents of reduced ascorbate(ASA)and reduced glutathione(GSH)

3.1.6 Determining the plant growth parameters and root architecture

3.1.7 Scanning electron microscopy (SEM) and transmission electron microscopy(TEM)

3.1.8 Statistical analysis

3.2 Results

3.2.1 Plant growth and root dehydrogenase activity

3.2.2 Ultrastructure changes in leaf and root cells

3.2.3 SEM observations of root tips and leaf epldermis

3.2.4 Basic nutrition solution(BNS)uptake and chlorophyll fluorescence(Fv/Fm)

3.2.5 Lipid peroxidation and SOD activity

3.2.6 Contents of reduced glutathione(GSH)and reduced ascorbate(ASA)

3.2.7 Effect of Vd toxin on root architecture and plant growth parameters

3.3 Discussion

3.4.Conclusion

Chapter 4 Role of brassinosteroids to alleviate the negative effects of Vd toxin on cotton callus growth

4.1 Materials and methods

4.1.1 Plant material,toxin preperation and treatment conditions

4.1.2 Determination of chlorophyll and carotenoids contents

4.1.3 Measurement of secondary metabolism-related enzymes activities

4.1.4 Quantification of flavonoids,total phenols,soluble sugars and protein

4.1.5 Measurement of DNA damage through single cell gel electrophoresis assay(Comet assay)

4.1.6 Tissue processing for transmission electron microscope(TEM)

4.1.7 Statistic analysis

4.2 Resuits

4.2.1 Effect of EBR on callus growth

4.2.2 EBR induced tolerance to Vd toxin

4.2.3 Chlorophyll and carotenoids contents

4.2.4 Activites of secondary metabollsm related enzymes under Vd toxin stress

4.2.5 Flavonoids,total phenols,soluble sugars and protein

4.2.6 DNA damage in cotton callus

4.2.7 Ultrastructural changes under Vd toxin and ameliorative effects of EBR

4.3 Discussion

4.4 Conclusion

Chapter 5 Brassinosteroids attenuated Verticillium wilt in upland cotton by modulating the carbohydrates metabolism,plasma membrane ATPases and intracellular osmolytes

5.1 Materials and methods

5.1.1 Plant growth,toxin preparation and treatment conditions

5.1.2 Evaluation of plant wilting,photosynthesis,transpiration,SPAD and chlorophyll fluorescence

5.1.3 Determination of prollne,glycine-betaine and soluble sugar content

5.1.4 Determination of the enzymes activities involved in carbohydrate metabolism

5.1.5 Measurement of different ATPases activity

5.1.6 Statistical analysis

5.2 Results

5.2.1 EBR appllcation attenuated plant wilting

5.2.2 Activity of different ATPase in cotton leaves

5.2.3 Accumuiation of Intracellular osmolytes

5.2.4 Effect of Vd toxin and EBR on activities of enzymes involved in carbohydrate metabolism

5.2.5 Photosynthetic parameters,chlorophyll content and fluorescence

5.2.6 Root and shoot biomass

5.3 Discussion

5.4 Conclusion

Chapter 6 Understanding the physiological and biochemical basis of innate and brassinosteroid induced tolerance to Verticillium wilt in cotton leaves

6.1 Materials and methods

6.1.1 Plant material,growthr and treatment conditions

6.1.2 Measurement of superoxide radical(O2),hydrogen peroxide(H2O2),their histochemical detection and electrolyte leakage in cotton leaves

6.1.3 Determination of leaf osmotic potential and relative water contents

6.1.4 Measurement of the enzymes activitles involved in carbohydrate and secondary metabolism in cotton leaves

6.1.5 Determination of callose and lignin content

6.1.6 Analysis of the activities of antioxidative enzymes

6.1.7 Dynamics of glutathione-s-transferase (GST), dehydroascorbate reductase(DHAR)and contents of non enzymatic antioxidants

6.1.8 Quantification of total phenol,DPPH activity,flavonoids and total soluble proteins

6.1.8 Statistical analysls

6.2 Results

6.2.1 H2O2/O2ˉaccumulation and electrolyte leakage in cotton leaves

6.2.2 Changes in leaf osmotic potential(OP)and relative water content(RWC)

6.2.3 Stem lignin and callose deposition

6.2.4 Changes in the activities of enzymes involved in carbohydrate metabolism(Al,SuSy,SPS)in cotton leaves

6.2.5 Activties of enzymes involved in secondary metabolism in catton leaves

6.2.6 Glutathione-s-transferase(GST),dehydroascorbate reductase(DHAR)and contents of phenols,flavonoids,soluble protein and non enzymatic antioxidants

6.2.7 Dynamics of antioxidative enzymes in cotton leaves

6.3 Discussion

6.4 Conclusion

Chapter 7 Genotypic differences in carbohydrate,secondary metabolism and antioxidative capacities in cotton root and amino acid contents in root exudates

7.1 Materials and Methods

7.1.1 Measurement of O2ˉand H2O2 contents, enzymes activities of carbohydrate,secondary metabolism and antioxidants,phenols,flavonoids and callose in cotton root

7.1.2 Plant material,growth,inoculum preparation and treatment conditons

7.1.3 EvalUation of disease resistance

7.1.4 Collection of root exudates and analysis of amino acids

7.1.5 In vitro activities of amino acid on the growth of V.dahliae

7.1.6 Statistical analysis

7.2 Results

7.2.1 H2O2 and O2ˉaccumulation in cotton roots

7.2.2 Root dehydrogenase activity and lipid peroxidation

7.2.3 Enzyme activities of carbohydrate metabolism in cotton roots

7.2.4 Activhies of enzymes involved in phenylpropanoid pathway(PAL,PPO,CAD,and SKDH)

7.2.5 Changes in the conrents of DPPH,flavonoids and callose in cotton root

7.2.6 Activities of antioxidative enzymes in cotton root

7.2.7 Glutathione dependent detoxification

7.2.8 Disease resistance evaluation and plant growth

7.2.9 Changes in the contents of amino acids in cotton root exudates

7.2.10 In vitro effects of amino acids on V. dahliae growth

7.3 Discussion

7.4 Conclusion

Chapter 8 Liquid chromatography mass spectroscopy(LC-MS)analysis reveal that phenolic compounds and endogenous pIant hormones

8.1 Materials and methods

8.1.1 Plant growth,inoculum preparation and treatment conditions

8.1.2 Evaluation of disease resistance,H2O2 accumulation and electrolyte leakage

8.1.3 Measurement of enzyme activities of phenylpropanoid pathway

8.1.4 Extraction of phenollc compounds and endogenous plant hormones

8.1.5 Liquid chromatography mass spectroscopy(LC-MS/MS)

8.1.6 Real-time quantitative PCR (qPCR)analysis

8.1.7 Statistical analysis

8.2 Results

8.2.1 Dynamics of PAL and CAD

8.2.2 Expression analysis of PAL and CAD through quantitative real time PCR(qPCR)

8.2.3 Patterns of phenolic compounds in cotton leaf and Vd toxin

8.2.4 Changes in the levels of endogenous plant hormones

8.2.5 Expression of genes involved in hormone synthesis

8.2.6 H2O2 accumulation and electrolyte leakage of detached cotton leaves

8.2.7 Effect of V.dahliae inoculation and EBR application on disease development,plant growth and fungus colonization

8.3 Discussion

8.4 Conclusion

References

List of Publications

展开▼

摘要

陆地棉作为世界上最主要的栽培棉种,极易感染黄萎病。黄萎病由土传半寄主性真菌——黄萎病菌(Verticillium dahliae)引起,由于寄主的特异性和宿主的变异性,常规的栽培措施不能够有效控制这种疾病。因此,抗性品种的选育已成为一种控制黄萎病蔓延和减少经济损失的有效手段。而要实现这个目标,我们需要很明确的了解真菌病原菌感染及其寄主相应的防御响应的机制。本文基于这个目的,研究了棉花在黄萎病菌胁迫条件下外源油菜素内酯(EBR)减轻黄萎病菌危害的生理和生化反应及其可能的机制。主要的研究结果如下:
  1.黄萎病菌毒素(Vd toxin)的活性,及其对陆地棉细胞结构、植株形态和生化特性的影响。
  用Vd毒素处理棉花根系,对陆地棉5个不同的基因型在细胞/组织水平和生理生化水平上产生很大的影响。Vd毒素能使棉株对营养液(BNS)的吸收能力急剧降低,与对照相比,各个供试品种(系)的吸收值分别降低如下:NIAB-846降低75%,ZhedaB降低70%,Zheda R降低63%,NIAB-111降低56%,NIAB-999降低34%。同样处理,与其它基因型相比,NIAB-999被Vd毒素诱导后使SOD活性提高, ASA和GSH含量降低,MDA的积累降低。另外,Vd毒素的影响可以持续两周,不但影响植株的生长,还会影响根的发育,具体表现在根表面积、根的长度、根直径和根体积等指标的减少;而这些指标都与植株吸收BNS的数值息息相关。这可能更进一步导致在Vd毒素处理下的植株根尖的受损、叶片气孔的关闭、根细胞结构的变异。综合评分结果显示,供试棉花材料对黄萎病菌的抗性依次为NIAB-999>NIAB-111>Zheda R>ZhedaB>NIAB-846。我们的结果表明,Vd毒素可以代替黄萎病菌来对植株细胞水平产生胁迫并监测黄萎病菌的作用机制。
  2.油菜素内酯(EBR)可以减轻Vd毒素对棉花的毒害,促进棉花愈伤的生长
  用油菜素内酯(EBR)处理棉花愈伤(浙大B)可以减轻Vd毒素对棉花的毒害,产生抗性,促进愈伤生长。先用EBR处理愈伤(EBR预处理)所产生的对Vd毒素的抗性比共处理(将EBR加入含毒素的愈伤培养基中)的效果要好的多。预先用EBR处理过的愈伤,在Vd毒素作用下依然保持绿色;而EBR与Vd共处理、Vd单独处理,棉花愈伤的褐化率分别为65%和90%。同样的,预EBR处理后愈伤的鲜重比Vd单独处理下愈伤鲜重增重52%,而共处理后愈伤的鲜重仅增重23%。实验结果还表明,与Vd毒素处理的愈伤相比,用EBR处理后棉花愈伤中叶绿素a、叶绿素b、胡萝卜素、多酚氧化酶(PPO)、苯丙氨酸解氨酶(PAL)、肉桂醇脱氢酶(CAD)、莽草酸脱氢酶(SKDH)、总酚、类黄酮、可溶性糖和蛋白质的含量或活性均有所升高。而且,EBR预处理的愈伤在这些指标上增加的量要高于共处理的愈伤组织。EBR处理的愈伤中DNA断裂的情况要明显的轻于Vd毒素处理下的愈伤组织。进一步研究表明,EBR处理愈伤组织中线粒体的数量/结构,以及基粒和基质类囊体也有所改进。EBR处理愈伤组织中内质网和核糖体的联系更紧密。上述结果还表明,EBR诱导棉花愈伤对Vd毒素的抗性主要是通过保护光合机构,提高光合色素和调节次生代谢来实现的。
  3.油菜素内酯(EBR)通过调节碳水化合物的代谢、细胞膜ATP酶和细胞渗透性来抑制陆地棉黄萎病的发生
  在前面研究的基础上,我们将我们的研究扩展到整个棉花植株,监测棉花在两种处理(Vd毒素单独处理,Vd毒素+EBR处理)时黄萎病的发病机制,以及EBR减轻棉花对Vd毒素损害的作用;其中,处理根系时的EBR浓度为5、10和15nM,处理叶片时的EBR浓度为50、100和200 nM。研究结果表明,在没有EBR的处理中,毒素引起棉株的萎蔫率为83%,根部甘氨酸甜菜碱和脯氨酸的积累分别比对照组(未加毒素)增加33%和61%。然而,在EBR处理的棉株中,这些物质的积累降低至5 nM和200 nM。而且,结果显示,Vd毒素单独处理使棉株的可溶性糖含量、光合速率(Pn)、蒸腾速率(Tr)、叶绿素含量和叶绿素荧光(Fv/Fm)比Vd毒素+EBR的处理显著下降。此外,与Vd毒素单独处理的棉株相比,Vd毒素+EBR处理棉株使蔗糖合成酶的活性(SuSy)、蔗糖磷酸合酶(SPS)、酸性转化酶(AI)均有升高,同时伴随着棉株根和地上部生物量的增加。还发现,与Vd毒素处理相比,EBR处理可以提高棉株总ATP酶、Na+ K+-ATP酶的活性,以及降低Ca+2 Mg+2-ATP酶和H+K+-ATP酶的活性。本研究可以增加对黄萎病的认识,以及对EBR诱导棉株对Vd毒素抗性的潜在作用有所了解。
  4.不同基因型棉花对黄萎病抗性和油菜素内酯诱导抗性的生理生化特征
  用温室实验的方法,观察了陆地棉(易感)、海岛棉(抗病)和及其杂种(耐病)对Vd毒素的反应,以及EBR处理的作用。结果表明,与陆地棉比较,海岛棉和海陆杂种棉株表现为:超氧化物(O2-)积累低,渗透势(OP)增加,水含量(RWC)增加,PAL、PPO和SKDH活性受抑制较轻,可溶性蛋白含量、胼胝质和DPPH自由基含量较高,酚类和黄酮类化合物含量减少。而且,这两个基因型具有较低的活性氧清除酶活性,表明它们比陆地棉有较适度的氧化胁迫。进一步研究表明,EBR可通过增强渗透调节、活性氧清除和解毒的信号来增强植株抗性。例如,在Vd毒素+EBR处理的所有基因型棉株中,AI活性均很高,因此使植株的渗透势增加,从而使受感染的植物叶片相对含水量保持在较高水平。此外,EBR的应用可以增加叶片细胞中超氧化物歧化酶(SOD)、过氧化氢酶(CAT),脱氢抗坏血酸还原酶(DHAR)和谷胱甘肽-S-转移酶(GST)的活性,从而能降低活性氧含量,促进棉花叶片的解毒过程。
  5.不同基因型棉花根在碳水化合物、次生代谢产物、抗氧化能力,及其根分泌物的氨基酸含量上的差异
  Vd毒素处理使棉花根的氧化加剧,SuSy、SPS、A1、DPPH和脱氢酶活性急剧降低,谷胱甘肽过氧化物酶(GPX)、谷胱甘肽还原酶(GR)和超氧化物歧化酶的活性升高,谷胱甘肽、抗坏血酸、PAL、SKDH、黄酮类化合物和脂质过氧化的增加。相反,EBR可以增加根系脱氢酶活性,降低O2-和H2O2、MDA和总黄酮的积累,以及降低DPPH和GR的活性。此外,陆地棉中活性氧积累量和MDA含量显著高于其它两种基因型(海岛棉和海陆杂种),而根系脱氢酶活性显著低于其它两个基因型。同样,AI、SuSy和SPS的活性在海陆杂种中保持不变,而在另外两个基因型中均有所降低,其中陆地棉的降幅最大。Vd毒素也增加了在所有品种的PAL和SKDH活性,而EBR处理后只有抗性和耐性基因型中PAL和SKDH活性进一步增加。有趣的是,CAD活性在海岛棉中要显著高于其它两种基因型,胼胝质的增量也显著高于其他两种基因型。同样,Vd毒素处理激发了所有基因型的GR、GPX、SOD、GST和DHAR活性提高,并以海岛棉的增幅最大,海陆杂种在GSH和ASA含量上的增幅次之。进一步研究表明,黄萎病菌孢子暴露于棉花根系使得根分泌物中的蛋氨酸(Met)、缬氨酸(Val)和丝氨酸(Ser)含量在所有基因型中都有所增加,而EBR处理使他们的含量进一步提高。此外,与陆地棉相比,海岛棉和海陆杂种根组织中的黄酮类含量,根分泌物中的酪氨酸(Tyr)、精氨酸(Arg)和苯丙氨酸(Phe)含量均有所提高,而这些变化的结果均能显著降低真菌的生长。因此,研究认为EBR处理对棉花根系影响不大,而诱导抗性的水平主要与基因型差异有关。6.液相色谱-质谱(LC-MS)分析表明植株酚类化合物和内源植物激素有助于油菜素内酯诱导棉花抗病
  PAL和CAD酶动力学及其转录水平的分析结果显示,用黄萎病菌单独处理的棉株,其活性和转录水平有更早和更多的增加;相反,在Vd毒素+EBR处理的植株中,这两个指标随着时间推移而逐步降低。液相色谱-质谱(LC-MS)的甲醇提取物结果显示,苯甲酸、肉桂酸和羟基苯甲酸能在叶片组织和Vd毒素中检测到,而邻苯二甲酸、4-羟基肉桂酸、没食子酸和香草酸只能在叶片组织中检测到。此外,棉花黄萎病菌接种处理,以及EBR单独处理或者与EBR组合(Vd毒素+EBR)处理,均会使酚类化合物的含量显著变化。在棉花被病菌感染的早期阶段,苯甲酸、间羟基苯甲酸、肉桂酸含量的降低,以及邻苯二甲酸和4-羟基肉桂酸的积累均表明,黄萎病菌单独处理对棉株的影响比EBR+黄萎病菌组合处理的影响要大。研究结果显示,黄萎病菌接种和EBR处理棉花均会影响植物内源激素水平。在黄萎病菌单独处理下,吲哚乙酸(IAA)、茉莉酸(JA)和水杨酸(SA)的含量先出现下降,之后升增加。相反,在黄萎病菌接种和随之的EBR处理棉花时,脱落酸(ABA)和赤霉素(GA3)含量不断增加。此外,分别参与SA、ABA和JA的合成的NPR1,DREB2B和LOX1的表达量在棉花黄萎病菌单独处理24 h的植株中显著增加;而在Vd毒素+EBR组合处理的植株中在随后的几天里持续增加。上述处理变化的综合结果显示,与黄萎病菌单独处理的植株相比,Vd毒素+EBR组合处理的植株具有较低的活性氧产生和电解质渗出率,较少的叶片病斑数和病株数量,生长抑制减轻和真菌定植减少。所有这些研究表明,EBR作为一种强有力的生长调节剂,可以被用来控制棉花黄萎病的作用。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号