首页> 中文学位 >太赫兹同轴腔高阶模式回旋管振荡器多模非线性研究
【6h】

太赫兹同轴腔高阶模式回旋管振荡器多模非线性研究

代理获取

目录

声明

摘要

第1章 绪论

1.1 研究背景

1.1.1 太赫兹电磁波辐射源

1.1.2 高功率微波辐射源

1.1.3 电子回旋脉塞原理

1.2 国内外研究现状

1.2.1 回旋管振荡器的发展历史

1.2.2 同轴腔回旋管振荡器的发展历史及研究现状

1.2.3 高次谐波回旋管振荡器的研究现状

1.3 本文研究思路及目标和研究内容

1.3.1 研究思路及目标

1.3.2 研究内容

第2章 同轴腔回旋管振荡器起振的非线性多模理论模型

2.1 引言

2.2 回旋管振荡器起振的分析方法简介

2.3 同轴腔回旋管的结构及冷腔场分布的求解方法

2.4 多模非自洽同轴谐振腔回旋管振荡器的数学物理模型

2.4.1 三段式结构同轴谐振腔内高频场的表达式

2.4.2 电子运动方程

2.4.3 多模起振的物理模型

2.4.4 欧姆损耗

第3章 非线性多模起振过程的模拟技术问题及实验验证

3.1 引言

3.2 冷腔体特性搜索

3.3 竞争模式筛选

3.4 电压上升过程的代表点

3.5 非线性模拟及实验验证

3.5.1 模拟流程图

3.5.2 迭代步长选取

3.5.3 电子采样

3.5.4 模式背景噪声初始赋值

3.5.5 电压初始赋值

3.5.6 模式极化

3.6 小结

第4章 0.22THz同轴腔高阶模式TE42,22基波回旋管振荡器的设计

4.1 引言

4.2 腔体设计

4.3 工作参数的确定

4.4 多模起振的模拟

4.4.1 内导体不开槽、无坡度的多模起振模拟

4.4.2 内导体开槽、有负坡度的多模起振模拟

4.5 小结

第5章 太赫兹同轴腔高阶模式高次谐波回旋管振荡器研究

5.1 引言

5.2 高阶模式高次谐波同轴腔回旋管的多模起振模拟

5.2.1 高阶模式TE-40,15二次谐波0.34THz同轴腔回旋管的起振模拟

5.2.2 高阶模式TE34,4三次谐波0.26THz同轴腔回旋管的起振模拟

5.3 超高阶模式TE43,4三次谐波0.34THz同轴腔回旋管设计

5.3.1 参数选择

5.3.2 模式竞争分析

5.3.3 多模起振模拟

5.4 小结

结论

致谢

参考文献

攻读博士学位期间发表的论文及科研成果

展开▼

摘要

太赫兹波泛指频率介于远红外和微波频段之间的电磁辐射,由于其在电磁波谱中所处的特殊位置,因而具备许多独特性质,在雷达、通信、材料处理、成像等领域有着广泛的应用前景。随着太赫兹波应用的日益广泛,研制有效的太赫兹辐射源成为世界各国在该领域的研究热点之一。基于电子回旋受激辐射原理发展起来的快波回旋器件——回旋管,被认为是目前最能获得高功率(上百千瓦及以上)输出的太赫兹辐射源。
  工作在太赫兹频段的传统圆柱腔回旋管工作在低阶模式,横向尺寸较小,这给加工及散热带来一定困难,导致输出功率受到限制。而采用同轴结构的回旋管谐振腔,由于其特殊结构可以抑制高阶模式竞争,进而可以增大其腔体横向尺寸,从而可以获得更大的功率输出。
  目前,关于同轴腔回旋管的实验研究,主要是为国际热核聚变(ITER)提供高功率电磁辐射源,其频率最高为170GHz,功率可达2.2MW。而对此结构下更高频率辐射的回旋管的研究,尚未见诸报道。
  同轴腔回旋管要获得高功率太赫兹波输出,有两个须得解决的主要问题:一是要尽可能地增大腔体的横向尺寸以利于加工和散热,二是尽可能降低工作磁场以利于降低工程成本。本文旨在探索并用非线性方法研究基于同轴结构回旋管原理,采用高阶模式高次谐波,在较低工作磁场条件下实现单模高功率太赫兹波输出的可能性。
  本文的编排如下:
  第一章详细介绍了太赫兹辐射源(尤其是基于电子回旋脉塞机理)的研究现状以及存在的主要问题,进而给出本文的研究内容以及意义所在。
  第二章建立了同轴腔回旋管振荡器多模起振模型。首先建立了同轴腔体中各个模式的冷腔体分析模型,并利用FORTRAN语言编制了相应程序,可在给定腔体结构下计算出相应模式的谐振频率,绕射因子以及冷腔体场分布;然后给出了多个模式在冷腔场分布下的起振模型,推导了起振过程中开槽深度较浅情况下各模式在外壁和内导体上的欧姆损耗的近似表达式,并提出了相应的数值计算方法,进而编写了考虑模式竞争和欧姆损耗的多模起振程序。
  第三章利用卡尔斯鲁厄研究中心(KIT)开展的TE34,19模式基次谐波、工作频率0.17THz同轴回旋管实验数据进行数值计算,模拟了多模起振过程,所得结果与实验报导较为吻合,验证了本文多模起振模型及所编程序的可靠性。
  第四章详细设计研究了一种工作在高阶模式TE42,22、工作频率为0.22THz的一种新型的同轴腔回旋管振荡器。首先确定了其腔体参数和竞争模式,进而研究内导体开槽以及取负坡度对于抑制模式竞争的影响。数值分析表明,内导体合适的开槽以及适当的坡度选择不仅可以稀化模谱,还可以降低竞争模式的绕射因子,从而提高其起振电流。在优化后的电子束导引中心半径下,通过对考虑不同旋转方向模式的多模起振过程的模拟,表明所设计器件可以在65kV~75kV的电压范围内,稳定地工作在单一模式下,最大输出功率可达0.8MW,其腔体损耗小于腔体壁所能承受的最大值。
  第五章研究设计了一种超高阶模式高次谐波(TE43,4三次谐波)工作频率为0.34THz、功率输出上百千瓦的同轴腔回旋管振荡器。在三次谐波起振过程的研究中发现,由于模谱太密和与电子束互作用相对较弱,普通高阶模式的三次谐波难以从激烈的模式竞争中起振。而采用边廊模式(即角向模式指数远大于径向模式指数)可以有效地克服模式竞争。通过对内导体开槽深度对基波模式参数影响的分析,选取合适的开槽深度将大大稀化其与工作模式之间的频率分割度,进而有效地抑制来自基波的模式竞争。多模起振的数值分析表明,三次谐波模式可以稳定地工作在相对较小的一个加速电压范围,并获得163kW的功率输出。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号