首页> 中文学位 >界面断裂韧性与膜基结合性能关系的研究
【6h】

界面断裂韧性与膜基结合性能关系的研究

代理获取

目录

文摘

英文文摘

第一章 绪论

1.1 引言

1.2 涂层与基体结合性能评价方法

1.2.1 载荷法

1.2.2 能量法

1.3 涂层弹性模量测量对界面结合性能评价的作用

1.4 涂层中残余应力对结合性能评价的影响

1.5 选题背景及研究内容

1.6 参考文献

第二章 涂层弹性模量的测量

2.1 引言

2.2 试验材料

2.2.1 块体材料

2.2.2 薄膜材料

2.2.3 热喷涂层材料

2.3 拉伸法测试

2.4 纳米压痕法测试

2.4.1 纳米压痕法力学分析模型

2.4.2 块体材料弹性模量的测量

2.4.3 薄膜弹性模量的测量

2.4.4 热涂层材料弹性模量的测量

2.5 弯曲法测试

2.5.1 弯曲法力学分析模型

2.5.2 热喷涂层弹性模量的测量

2.6 屈曲法测试

2.6.1 屈曲法模型

2.6.2 Ti薄膜弹性模量的测量

2.7 膜基界面结合性能评价中涂层弹性模量测试方法的选择

2.7.1 各类测量方法的特点

2.7.2 热喷涂层结合性能分析中涂层弹性模量测量方法的选择

2.8 本章小结

2.9 参考文献

第三章 弯曲法表征涂层与基体的结合性能

3.1 引言

3.2 三点弯曲法评价涂层结合性能

3.2.1 试样材料与试验方法

3.2.2 三点弯曲试验

3.2.3 三点弯曲有限元模型与材料参数

3.2.4 三点弯曲试验界面裂纹扩展过程有限元分析

3.2.5 裂纹萌生临界载荷与涂层弹性模量对临界能量释放率计算结果的影响

3.3 四点弯曲法评价薄膜(涂层)结合性能

3.3.1 试样材料与试验方法

3.3.2 四点弯曲试验

3.3.3 四点弯曲有限元分析模型

3.3.4 四点弯曲试验裂纹扩展过程有限元分析

3.4 三点弯曲与四点弯曲法的特点

3.5 本章小结

3.6 参考文献

第四章 残余应力对界面裂纹扩展的影响

4.1 引言

4.2 界面裂纹几何构型

4.3 有限元模型

4.3.1 几何与材料模型

4.3.2 力学参数无量纲化

4.3.3 Cohesive单元力学理论模型

4.4 残余应力对裂纹扩展行为的影响

4.4.1 加载方式对裂纹扩展行为的影响

4.4.2 残余应力对裂纹扩展行为的影响

4.4.3 残余应力对裂纹扩展过程中消耗外力功的影响

4.5 残余应力对界面裂纹扩展影响的讨论

4.6 本章小结

4.7 参考文献

第五章 残余应力对界面断裂韧性的影响

5.1 引言

5.2 界面裂纹几何模型

5.3 小挠度弹性理论模型

5.4 小挠度条件下力学分析

5.4.1 残余应力对能量释放率的影响

5.4.2 屈曲临界应力对能量释放率的影响

5.4.3 中心加载区半径对能量释放率的影响

5.5 大挠度有限元模型

5.6 大挠度条件下力学分析

5.6.1 残余应力对能量释放率的影响

5.6.2 残余应力对应力相角的影响

5.7 讨论

5.8 本章小结

5.9 参考文献

第六章 结论及创新

本文的创新点:

致谢

攻读博士学位期间发表的学术论文

展开▼

摘要

涂层与基体的结合性能是膜基结构系统的重要力学性能之一,其表征评价方法多种多样,但目前还没有一种方法可适用于所有的膜基系统。对于致密性较差、且存在较多缺陷的热喷涂层而言,可采用能量法评价体系,即通过界面裂纹扩展能量释放率与应力相角表征热喷涂层与基体的结合性能。相对于载荷法得到的膜基脱离所需临界载荷值,建立在断裂力学基础上的能量法评价结果具有更清晰的物理意义,且更适合表征复合应力状态下的界面结合性能。本文在国家自然科学基金(No.50601018)和上海市纳米专项基金(No.0359nm005)资助下,对MoB-CoCr热喷涂层与2Cr13钢基体结合性能进行了系统地研究,对能量法评价体系进行了有益尝试和探讨,主要研究结果如下:
   采用能量法评价体系时,必须首先知晓涂层的弹性模量,才能采用力学模型计算出界面断裂韧性,而对涂层弹性模量的测量需根据涂层组织结构和性能特点合理地选择测量方法。本文采用纳米压痕法、弯曲法、屈曲法对2Cr13钢和Al块体材料、(Ti,Al)N和Ti薄膜以及MoB-CoCr热喷涂层的弹性模量进行了系统的研究。研究中我们发现,对于宏观上组织结构和性能均匀的块状样品,纳米压痕法和弯曲法均可取得满意的结果。然纳米压痕法测试结果反映的是测试微区的力学性能,对微区组织结构相当敏感,分散性大,且在大压入载荷/深度条件下还受基底材料的影响。对于(Ti,Al)N薄膜/316L不锈钢基体样品,只有当压入深度<10%膜厚时,基底材料的影响才能忽略,所测得弹性模量值才是可信的,否则为膜层与基底材料共同作用的综合弹性模量。弯曲法测试范围大,测试结果反映的是试样整体的力学性能,数据重复性好。因此,对致密度较差、且存在大量缺陷的MoB-CoCr热喷涂层,弯曲法更适合测量其弹性模量。由于孔隙的存在会降低涂层样品的整体刚度,在局部致密处采用纳米压痕法所测得的弹性模量通常高于反映涂层整体性能的弯曲法所测的弹性模量值。至于屈曲法,则在厚度非常薄的薄膜测量中更具优势。本文利用屈曲法对沉积在107硫化橡胶表面厚度仅100 nm Ti薄膜的弹性模量进行测量,得到弹性模量值为127 GPa。
   针对MoB-CoCr涂层与2Cr13钢结合性能测量,本文在三点弯曲和四点弯曲试验基础上,设计两套研究方案。三点弯曲试验使用单面涂层试样,并利用涂层弯曲变形产生的拉应力促使裂纹从涂层表面萌生并扩展到膜基界面上。四点弯曲试验使用sandwich结构试样,外层基体中有一预制缺口,且缺口底部靠近膜基界面。四点弯曲试验通过缺口处集中的应力(正应力)作用于界面,促使界面裂纹萌生扩展。利用有限元模型对三点弯曲和四点弯曲试验过程模拟,计算出系统能量的变化及裂纹尖端应力场,结合断裂理论计算出能量释放率与应力相角,完成对涂层与基体结合性能的评价。本文的弹塑性模型分析模型将金属基体塑性变形所耗散的能量考虑到能量释放率的计算模型中,相对于过去传统的四点弯曲法弹性分析模型,更适合于热喷涂层/金属基体系统。两种研究方案对MoB-CoCr与2Cr13钢结合性能评价结果相近似:三点弯曲试验得到能量释放率为73 J/m2、应力相角为36.8°;四点弯曲试验得到能量释放率为76 J/m2、应力相角为37.1°。
   由于涂层与基体材料的物性参数不同,在制备过程中涂层内总存在有残余应力。涂层中残余应力会影响裂纹扩展行为及界面断裂韧性,进而影响能量法结合性能评价。本文通过cohesive单元有限元模型模拟了裂纹在涂层中存在残余应力的条件下沿界面扩展过程,发现残余应力会影响裂纹萌生及扩展所需外力、裂纹长度、挠曲涂层的位移及系统消耗的能量。在利用这些参量评价界面结合性能时,评价的结果必然受到残余应力的影响。
   本文根据弹性力学,解出涂层中存在残余应力条件下圆形界面裂纹扩展能量释放率的解析表达式。该表达式将加载区作为有一定半径的圆形区域,避免了以往将加载区近似为点所带来的较大计算误差,较点载荷近似模型应用范围更广。此外,该表达式将残余应力引入到分析模型中,更适合分析涂层中有残余应力的情况。利用该表达式和有限元模型,对不同残余应力条件下的能量释放率进行数值分析,结果显示残余应力对能量释放率的影响呈非线性特征,其影响程度受加载区及界面裂纹几何尺寸的影响。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号