首页> 中文学位 >破碎-分选废弃印刷电路板混合金属颗粒中Pb,Zn,Cd等重金属的真空分离与回收
【6h】

破碎-分选废弃印刷电路板混合金属颗粒中Pb,Zn,Cd等重金属的真空分离与回收

代理获取

目录

声明

摘要

第一章 绪论

1.1 研究背景

1.1.1 电子废弃物概述

1.1.2 相关管理条例

1.2 废弃印刷电路板的特性

1.2.1 废弃印刷电路板的资源性

1.2.2 废弃印刷电路板的危害性

1.3 废弃印刷电路板中金属的回收技术

1.3.1 火法回收金属

1.3.2 热解回收金属

1.3.3 湿法回收金属

1.3.4 微生物法回收金属

1.3.5 机械物理法回收金属

1.4 真空冶金分离技术回收固体废弃物中金属的研究进展

1.4.1 真空冶金分离技术

1.4.2 真空冶金分离技术应用于废弃合金

1.4.3 真空冶金分离技术应用于废旧电池

1.4.4 真空冶金分离技术应用于其它固体废弃物

1.5 研究内容

参考文献

第二章 真空炉研制与技术路线

2.1 引言

2.2 实验材料及仪器

2.3 真空冶金分离原理

2.4 真空电阻炉研制

2.4.1 真空电阻炉的结构设计

2.4.2 真空电阻炉的温度场模拟

2.4.3 真空电阻炉的性能参数

2.4.4 真空电阻炉的主要工艺

2.5 技术路线

参考文献

第三章 纯金属颗粒的真空蒸发与冷凝规律

3.1 引言

3.2 锌颗粒的蒸发与冷凝

3.2.1 锌的蒸发热力学

3.2.2 锌颗粒的蒸发动力学

3.2.3 锌的冷凝

3.3 镉颗粒的蒸发与冷凝

3.3.1 镉的蒸发热力学

3.3.2 镉颗粒的蒸发动力学

3.3.3 镉的冷凝

3.4 铅颗粒的蒸发与冷凝

3.4.1 铅的蒸发热力学

3.4.2 铅颗粒的蒸发动力学

3.4.3 铅的冷凝

3.5 铋颗粒的蒸发与冷凝

3.5.1 铋的蒸发热力学

3.5.2 铋颗粒的蒸发动力学

3.5.3 铋的冷凝

3.6 分离判据及分离实验

3.7 小结

参考文献

第四章 混合金属颗粒的真空分离规律

4.1 引言

4.2 铜锌二元混合金属颗粒的真空分离

4.2.1 真空分离

4.2.2 各因素对分离率影响

4.2.3 实料验证

4.3 铜铅二元混合金属颗粒的真空分离

4.3.1 料层厚度及加热时间对分离率影响

4.3.2 真空度对分离率影响

4.4 多元混合金属颗粒的真空分离

4.4.1 依次蒸发分离

4.4.2 共同蒸发分离

4.5 小结

参考文献

第五章 混合金属颗粒真空分离过程中金属间的相互影响

5.1 引言

5.2 铜的影响作用

5.2.1 铜对分离锌的作用

5.2.2 铜对分离铅的作用

5.3 铋的影响作用

5.4 铅、锌之间的相互影响

5.5 小结

第六章 混合金属颗粒中焊锡的真空分离与回收

6.1 引言

6.2 焊锡的真空分离规律

6.3 混合金属颗粒中焊锡的真空分离规律

6.3.1 PbSn与Cu+PbSn的Pb分离率对比

6.3.2 几个效应

6.4 小结

参考文献

第七章 混合金属颗粒中易挥发金属真空分离工艺及环境影响评价

7.1 引言

7.2 工艺可视化

7.3 应用实例

7.4 工艺环境评价

7.4.1 噪声

7.4.2 总悬浮颗粒物(TSP)和可吸入颗粒物(PM10)

7.4.3 TSP及PM10中的Pb、Cd

7.5 工艺经济分析

7.6 小结

参考文献

结论与展望

结论

展望

创新点

致谢

发表论文及申请专利情况

展开▼

摘要

废弃印刷电路板(WPCBs)是电子垃圾的重要组成部分,其中蕴含的金属的含量是天然矿藏品位的几十倍甚至几百倍,具有重要的回收价值。目前,WPCBs的资源化利用主要集中在回收铜和贵金属,铅、镉等有毒重金属则得不到有效处理和处置。在回收铜和贵金属的同时,铅、镉等有毒重金属释放到空气、土壤、水等环境中,造成重金属污染,危害人类健康。本论文将废弃印刷电路板经破碎-分选后得到的混合金属颗粒作为研究对象,自行研制真空分离设备一台,根据混合金属中各组分在同一温度下蒸气压不同,在真空中通过蒸发与冷凝,实现各组分的相互分离。研究各金属颗粒蒸发-冷凝的热力学和动力学条件,得出混合金属颗粒中高蒸气压、低熔点金属的蒸发分离机制,揭示多元混合金属在真空分离过程中的相互影响作用,使废弃印刷电路板中的多元混合金属得到分离和回收,避免了在回收铜冶炼过程中有毒、有害金属(铅、镉等)挥发到大气中,并实现了铅、镉等金属的分离与回收。
  发现混合金属颗粒中锌、镉由固态直接升华,蒸发过程受到表面氧化膜的阻碍,粒径越小,阻碍作用越大;铅、铋颗粒由固态熔化为液态进而蒸发,粒径越小,形成的液滴蒸气压越大,蒸发速率也越大,蒸发速率可以用Langmuir-Knudsen公式描述。结合各种金属元素的蒸气压差异和纯金属颗粒的蒸发率差别,得出混合金属颗粒中锌、镉、铅、铋真空冶金的分离判据,根据判据,将易挥发金属颗粒进行分离,混合物中目标金属的分离率达90%以上。
  从动力学角度,混合金属颗粒的真空分离过程分为金属颗粒蒸发/升华、金属蒸气扩散Ⅰ(即颗粒间扩散)、金属蒸气扩散Ⅱ(即炉膛内扩散)以及冷凝四步。扩散Ⅰ阶段,铜颗粒料层厚度对混合物中金属的蒸发分离起到阻碍作用,扩散Ⅱ阶段,高真空有利于高蒸气压金属的分离。
  对于多元混合金属颗粒,由于铜颗粒的阻碍作用,各种易挥发金属蒸发率之间的差异缩小,很难实现依次分离。当金属混合颗粒中同时含有铋和铅时,铋与铅形成负偏差合金——铅铋合金,蒸气压小于铅或铋,使铅的蒸发分离更为困难,在1123 K下,需要较长的加热时间(135-150 min)才能使分离率达90%以上,但镉等高蒸气压金属可以在低温下优先与铜分离,在1023 K下加热60 min,镉的分离率接近100%,然后再分离铅和铋;当同时含有锌和铅时,锌和铅在1123 K下加热90 min,利用锌和铅的冷凝位置和冷凝形貌不同,实现了铜富集体中铅、锌的共同蒸发分离与分别回收。根据各种金属蒸发与冷凝特性的差异,将优先分离与共同蒸发分离相结合,可以实现混合金属颗粒中易挥发金属的分离与回收。
  焊锡-铜混合颗粒的铅分离率高于单纯焊锡,大量铜颗粒的存在使得焊锡中的铅更易于蒸发分离,存在多层蒸发效应和铜-锡合金化效应,当真空度维持在0.1-1 Pa,在1123 K下加热90 min,铅分离率可达到95%以上。真空分离铜富集体中的焊锡,得到的青铜色聚集体富含金属锡,使原本分散分布的锡得到富集,有利于进一步资源化再利用。
  在研究基础上,利用Labview软件建立了混合金属颗粒分离工艺的人机交互界面,将含有各种高蒸气压金属铜富集体的真空分离工艺参数进行可视化显示,便于制定混合金属颗粒的真空冶金分离流程,指导实际生产。
  对真空分离车间内的噪声、总悬浮颗粒物(TSP)、可吸入颗粒物(PM10)及TSP中铅和镉的浓度进行监测评价,结果表明:真空分离车间内的主要噪声源为机械泵和水泵,噪声声级分别为71.2和69.5 dB(A),符合国家标准,在该环境下工作,不会对工人的听力造成损害;TSP和PM10浓度符合我国《环境空气质量标准》规定的空气二级标准;采用美国EPA人体暴露风险评价方法对TSP中所含的铅和镉进行健康风险评价显示,铅和镉浓度均低于风险阈值,不会对工人造成健康伤害。
  本文采取的真空分离法对WPCBs经破碎-分选后的铜富集体进行分离回收,在整个真空分离过程中,铜颗粒没有熔化,铜富集体中的铅、镉等重金属在低于铜熔点的温度下实现了固态分离。与传统的金属熔体真空冶金分离相比,具有分离温度低,能耗低的特点。本研究为分离回收WPCBs中的重金属提供了理论依据,为WPCBs的资源化回收和再利用提供一种高效、环保、经济可行的方法,同时也为回收其它电子废弃物中的铅、镉等重金属提供了技术储备。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号