首页> 中文学位 >反复压缩大塑性变形制备镁基复合材料的组织与性能研究
【6h】

反复压缩大塑性变形制备镁基复合材料的组织与性能研究

代理获取

目录

声明

摘要

第一章 绪论

1.1 镁基复合材料的制备

1.2 常规塑性加工制备金属基复合材料的研究现状

1.2.1 热挤压

1.2.2 轧制

1.2.3 锻造

1.3 大塑性变形制备金属基复合材料的研究进展

1.3.1 等通道转角挤压

1.3.2 往复挤压

1.3.3 高压扭转

1.3.4 累积轧制

1.3.5 搅拌摩擦加工

1.4 选题意义及研究内容

1.4.1 本课题研究意义

1.4.2 研究内容

参考文献

第二章 实验过程与方法

2.1 AZ31-Si原位复合材料的熔铸

2.1.1 原材料

2.1.2 熔炼和浇铸

2.2 循环闭式横锻制备AZ31-Si原位复合材料

2.3 反复镦压制备AZ31-Si原位复合材料

2.4 往复挤压制备Mg-SiC纳米复合材料

2.4.1 熔铸和预挤压

2.4.2 往复挤压

2.5 组织结构分析

2.5.1 物相分析

2.5.2 金相显微分析

2.5.3 扫描电镜分析

2.5.4 透射电镜分析

2.5.5 电子背散射衍射分析

2.6 力学性能测试

2.6.1 室温拉伸性能

2.6.2 高温拉伸性能

2.6.3 硬度测试

2.7 耐磨性能测试

2.8 本章小结

参考文献

第三章 循环闭式模锻制备AZ31-Si原位复合材料的组织和性能

3.1 引言

3.2 铸态AZ31-Si原位复合材料的组织和性能

3.2.1 Si含量对AZ31-Si组织和力学性能的影响

3.2.2 AZ31-Si复合材料的高温拉伸力学性能

3.2.3 Si含量对AZ31-Si耐磨性能的影响

3.2.4 磨损距离对AZ31-Si耐磨性能的影响

3.2.5 载荷对AZ31-Si耐磨性能的影响

3.2.6 滑动速度对AZ31-Si耐磨性能的影响

3.2.7 温度对AZ31-Si耐磨性能的影响

3.3 循环闭式模锻工艺的数值模拟

3.3.1 几何模型

3.3.2 力学模型

3.3.3 材料本构关系

3.3.4 初始条件和边界条件

3.3.5 流动场分布

3.3.6 载荷分析

3.3.7 温度场分布

3.3.8 应力场分布

3.3.9 应变场分布

3.4 循环闭式模锻AZ31-Si原位复合材料的组织和性能

3.4.1 道次对AZ31合金组织和力学性能的影响

3.4.2 道次对AZ31-2 wt.%Si组织和力学性能的影响

3.4.3 道次对AZ31-5 wt.%Si组织和力学性能的影响

3.4.4 加工温度对AZ31合金组织和力学性能的影响

3.4.5 加工温度对AZ31-2 wt.%Si组织和力学性能的影响

3.4.6 循环闭式模锻对AZ31合金拉伸断裂行为的影响

3.4.7 循环闭式模锻对AZ31-Si拉伸断裂行为的影响

3.4.8 循环闭式模锻AZ31-Si原位复合材料中Mg2Si相的细化机制

3.4.9 循环闭式模锻对AZ31-Si耐磨性能的影响

3.4.10 循环闭式模锻制备AZ31合金和AZ31-Si复合材料磨损截面的EBSD分析

3.5 本章小结

参考文献

第四章 反复镦压制备AZ31-Si原位复合材料的组织和力学性能

4.1 引言

4.2 反复镦压工艺的数值模拟

4.2.1 几何模型

4.2.2 力学模型

4.2.3 材料本构关系

4.2.4 初始条件和边界条件

4.2.5 流动场分布

4.2.6 载荷分析

4.2.7 温度场分布

4.2.8 应力场分布

4.2.9 应变场分布

4.3 反复镦压模具结构的优化

4.3.1 型腔宽度

4.3.2 模具过渡角半径

4.4 反复镦压工艺参数优化

4.4.1 加工路径

4.4.2 镦压速度

4.4.3 镦压温度

4.4.4 摩擦系数

4.5 反复镦压AZ31-Si原位复合材料的组织和力学性能

4.5.1 道次对AZ31合金组织和力学性能的影响

4.5.2 加工温度对AZ31组织和力学性能的影响

4.5.3 道次对AZ31拉伸断裂行为的影响

4.5.4 道次对AZ31-2 wt.%Si组织和力学性能的影响

4.6 本章小结

参考文献

第五章 往复挤压制备Mg-SiC纳米复合材料的组织和性能

5.1 引言

5.2 Mg-1 wt.%SiC纳米复合材料的组织和性能

5.2.1 Mg-1 wt.%SiC纳米复合材料的组织

5.2.2 Mg-1 wt.%SiC纳米复合材料的耐磨性能

5.3 往复挤压对Mg-1 wt.%SiC纳米复合材料组织和性能的影响

5.3.1 往复挤压对Mg-1 wt.%SiC组织的影响

5.3.2 往复挤压对Mg-1 wt.%SiC硬度和耐磨性能的影响

5.4 本章小结

参考文献

第六章 结论

6.1 主要结论

6.2 创新点

6.3 展望

攻读博士学位期间发表的学术论文、专利及奖励

致谢

展开▼

摘要

本文采用反复压缩大塑性变形技术制备镁基复合材料,研究复合材料的组织和性能。将Si加入AZ31镁合金熔体制备了AZ31-Si原位镁基复合材料坯料,采用循环闭式模锻(CCDF)和反复镦压(RU)两种反复压缩大塑性变形技术细化和均匀组织结构,制备Mg2Si原位增强的均匀组织镁基复合材料,考察了Si含量对复合材料坯料组织、力学性能和耐磨性能的影响,研究了反复压缩工艺参数(变形道次、加工温度)对基体组织和增强相尺寸、形貌、分布,以及对力学性能的影响规律,分析了反复压缩对室温拉伸断裂行为的影响,探讨了AZ31-Si反复压缩过程中Mg2Si相的破碎机制,采用有限元法模拟了反复压缩过程中复合材料的温度场、流动场、应力场、应变场,优化了模具和工艺。通过高能超声技术将SiC纳米颗粒加入Mg熔体中制备了Mg-1wt.%SiC纳米复合材料坯料,采用往复挤压(CEC)大塑性变形技术细化和均匀组织,弥散SiC纳米颗粒分布,制备了SiC纳米颗粒均匀分布的镁基纳米复合材料,考察了往复挤压道次对Mg-1wt.%SiC纳米复合材料坯料组织和性能的影响。
   研究了Si含量对AZ31-Si原位复合材料坯料组织和室温性能的影响,表明铸态AZ31-Si原位复合材料由α-Mg基体、Mg17Al12相、树枝状初生Mg2Si相和汉字状共晶Mg2Si相组成,随着Si含量从0增加到5%(wt.%),Mg2Si相的尺寸和体积分数逐渐增大,复合材料的硬度、屈服强度和耐磨性能逐渐提高,由于基体中粗大的Mg2Si颗粒尖端附近容易产生应力集中,抗拉强度和延伸率逐渐降低,室温拉伸断裂形式由韧脆混合型穿晶断裂转变为解理脆性断裂。
   考察了铸态AZ31-Si复合材料坯料的高温力学性能和耐磨性能,发现随着Si含量从0增加到5%(wt.%),铸态AZ31-Si复合材料在150℃下的抗拉强度和延伸率逐渐减小;随着拉伸温度从100℃提高到200℃,AZ31-2wt.%Si复合材料的抗拉强度逐渐降低,延伸率逐渐提高;随着温度从30℃提高到190℃,由于复合材料的强度和硬度逐渐降低,高温下热应力与接触应力共同作用,磨损失重逐渐增大。
   研究了反复压缩道次对AZ31-2wt.%Si坯料组织的影响,发现随着循环闭式模锻及反复镦压道次从0增加到5,由于动态再结晶,晶粒平均尺寸逐渐减小,尺寸分布均匀性逐渐提高;变形时基体产生的剪切应力将Mg2Si由粗大的汉字状和树枝状逐渐破碎为细小多角块状,破碎的Mg2Si颗粒在多道次加工过程中反复流动而重新分布,其分布均匀性逐渐提高,5道次后呈细小、弥散分布;坯料反复压缩过程的有限元模拟表明应力场中存在剪切应力,应变场中累积应变和应变的分布均匀性随道次增加逐渐提高,这些因素导致Mg2Si颗粒的分布均匀性随道次增加逐渐提高。
   研究了反复压缩道次对AZ31-2wt.%Si坯料性能的影响,结果表明:随着循环闭式模锻及反复镦压道次从0增加到5,由于基体晶粒逐渐细化和Mg2Si相弥散化,复合材料的屈服强度、抗拉强度、延伸率和耐磨性能不断提高,拉伸断裂形式由解理脆性断裂转变为韧脆混合断裂。
   AZ31和AZ31-2wt.%Si坯料在不同温度反复压缩后的组织和性能研究表明:随着循环闭式模锻加工温度从350℃提高到450℃:AZ31合金晶粒平均尺寸逐渐增大,形成的基面织构减弱,屈服强度和抗拉强度逐渐降低,延伸率逐渐提高;在400℃下加工时AZ31-2wt.%Si复合材料中Mg2Si颗粒破碎效果最好,且基体晶粒平均尺寸最小,强度和延伸率最高。
   利用有限元法分析了反复镦压模具结构和工艺参数对材料流动的影响,发现减小型腔宽度可以提高每道次的等效应变,但降低应变分布均匀性和坯料的形状尺寸保持度;模具过渡角可提高坯料成型表面质量,随着过渡角半径的增大,坯料中应变分布均匀性有所提高;反复镦压过程中坯料的绝大部分在三个方向都处于压应力状态,变形过程中由于流速不均匀和流动方向不同,剪切变形总是存在的;随反复镦压道次的增加,累积应变和应变的分布均匀性都逐渐提高;采用路径B(每道次加工后坯料绕Z轴旋转90°)镦压获得的坯料中等效应变分布比路径A(每道次加工后坯料不旋转)更均匀;随着镦压温度的提高,最大镦压载荷不断减小,坯料中应变和应力分布更加均匀。
   研究了采用路径A和B反复镦压后镁合金的组织和性能,表明在350℃、5道次,采用路径B加工对AZ31合金具有更强的晶粒细化和均匀化效果,对强度和塑性的提高更加显著。
   往复挤压道次对Mg-1wt.%SiC纳米复合材料坯料组织和性能的影响研究表明:随着道次从0增加到8,复合材料的平均晶粒尺寸逐渐减小,纳米颗粒的分布均匀性、复合材料的硬度和耐磨性能逐渐提高;往复挤压过程中镁基体强烈的剪切变形使SiC纳米颗粒团簇解离并均匀分布;纳米复合材料性能的提高主要归结于弥散强化和细晶强化。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号