首页> 中文学位 >细胞图型及微流控芯片上的细胞培养和分化
【6h】

细胞图型及微流控芯片上的细胞培养和分化

代理获取

目录

文摘

英文文摘

声明

外文摘要

Acknowledgement

Outlines

Chapter 1 Introduction

1.1 Cell Patterning

1.1.1 Cells and stem cells

1.1.2 Cell-material interaction

1.1.3 Previous works

1.2 Microfluidics and Lab-on-a chip system

1.2.1 History recall of Microfludics

1.2.2 Fundamental notions of Microfluidics

1.2.3 On chip cell culture and differentiation

1.2.4 Previous works

1.3 Objective of this work

References:

Chapter 2 Cell patterning

2.1 Microfabrication techniques

2.1.1 Photolithography

2.1.2 Soft lithography

2.1.3 Microcontact printing(μCP)

2.1.4 Nanoimprint lithography(NIL)

2.2 PDMS degas induced cell patterning

2.2.1 PDMS mold fabrication

2.2.2 PDMS degas induced patterning

2.2.3 Cell patterning

2.2.4 Results and discussions

2.2.5 Conclusions

2.3 High resolution cell patterning

2.3.1 General lithography method

2.3.2 Culture patterning

2.3.3 Results and discussions

2.3.4 Conclusions

2.4 Single cell pattern in microfluidic chip

2.4.1 The fabrication of the patterned chip

2.4.2 The Poly-Lysine-FITC pattern

2.4.3 Single cell pattern in chip

2.5 Conclusions

References:

Chapter 3 On-chip cell culture:case of ES cells

3.1 Introduction

3.2 Microfluidic device fabrication for mES cells

3.3 Simple devices for MEFs.

3.4 On-chip ES culture and differentiation

3.4.1 mES Cell culture

3.4.2 EB formation and differentiation

3.4.3 Seeding MEF cells on micro-channel-well system

3.5 Immunocytochemistry

3.6 Seeding MEFs on the different ratios of PDMS substrates

3.7 Results and discussions for ES cells

3.7.1 Cell adhesion depends on different substrates

3.7.2 ES co-culture with MEF onto micro-channel-well system

3.7.3 ES-derived neural differentiation on micro-channel-well system

3.8 Results and discussions for MEFs on PDMS substrates

3.9 Conclusion

References:

Chapter 4 On-chip cell culture:case of MSCs

4.1 Introduction

4.2 Microfluidic device fabrication

4.3 On-chip cell culture

4.4 RMSCs culture in the three microfluidic devices

4.4.1 Characterization of microfluidic devices for RMSCs

4.4.2 RMSCs in microfluidic device Ⅰ

4.4.3 RMSCs in microfluidic device Ⅱ

4.4.4 RMSCs in microfluidic device Ⅲ

4.4.5 RMSCs in culture flask

4.4.6 Comparison of the three devices

References

Chapter 5 On-chip cell differentiation:case of MSCs

5.1 Introduction

5.2 Microfluidic device fabrication

5.3 Differentiation protocol

5.3.1 Adipogenic differentiation

5.3.2 Neural differentiation

5.3.3 Characterization techniques

5.4 Results and discussions

5.4.1 Adipogenic differentiation

5.4.2 Neural differentiation

5.5 Conclusion

References:

Chapter 6 Towards a cellular network formation

6.1 Introduction

6.2 Experiments

6.2.1 Microcontact printing pattern for RMSCs

6.2.2 The microwell-network for mES cells.

6.3 Microcontact printing PLL Pattern for RMSCs

6.3.1 Microcontact printing PLL Pattern

6.3.2 RMSCs network pattern

6.3.3 Other patterns

6.3.4 Concluding remarks

6.4 Mirowell-network for mES cells

6.4.1 the microwell-network

6.4.2 mES-derived neurons in the microwell network.

6.5 First try on electrode chip for the signal transduction

References

Summary and Perspective

Publication list of this thesis work

APPENDIX

展开▼

摘要

微流控和图型化技术在细胞生物学领域中的应用具有重要的意义。本论文首先讨论几种新的细胞图型化技术。其一为PDMS模负压吸附法,由此形成的物理或化学印迹被用于胚胎纤维细胞的图型化;其二为高分辨率压印刻蚀法,通过紫外光软膜纳米压印技术可制作高分辨率生物分子图型,细胞的贴附情况表明此法有效地改善了生物分子图型的稳定性;另外微流控芯片中单细胞阵列也被实现,并且细胞可以长时间的培养观察。微流控技术首先被用于基底材料对胚胎干细胞的培养和成神经细胞分化影响的研究,结果表明,尽管胚胎干细胞可在多种基底上生长,细胞贴附力较强的基底更利于分化实验的实现。微流控芯片也被用于研究骨髓间充质干细胞的培养及相应的成脂肪细胞和神经细胞的分化。且由微接触印刷法制备的图型被用于诱导骨髓间充质干细胞的成神经细胞分化。又制作了用于老鼠胚胎干细胞的神经分化的微井图型。最后,尝试了神经细胞电极芯片,用于信号传导的测量。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号