首页> 中文学位 >Ag/SBA-15(MCM-41)纳米复合材料的超临界制备与过程基础研究
【6h】

Ag/SBA-15(MCM-41)纳米复合材料的超临界制备与过程基础研究

代理获取

目录

文摘

英文文摘

声明

引 言

1 文献综述

1.1超临界流体及超临界流体沉积技术

1.2纳米复合材料制备

1.2.1 常规方法

1.2.2 SCFD法

1.3 SCFD法沉积机理研究

1.4 SCFD法中的还原方法

1.5本论文研究课题的提出

2实验方法与设计

2.1实验药品及仪器

2.2.1 SCFD法实验流程

2.2.2载体制备

2.2.3 SCFD实验步骤

2.2.4样品还原

2.3样品表征

2.3.1 表征方法

2.3.2基材表征结果

2.4实验设计

2.4.1 实验内容及实验目的

2.4.2实验设计及规划

3 SCFD法制备纳米复合材料

3.1 Ag/SBA-15复合材料制备

3.1.1 SCFD法制备Ag/SBA-15

3.1.2浸渍法制备Ag/SBA-15

3.1.3氮气作为溶剂制备Ag/SBA-15

3.2 Ag/MCM-41复合材料制备

3.2.1 乙醇作为共溶剂

3.2.2乙醇1.5mL+乙二醇1.5mL作为共溶剂

3.2.3改变共溶剂用量及配比

3.2.4减少前驱物用量和调配共溶剂

3.2.5选取最优条件制备复合材料

4 SCFD过程机理研究

4.1 SCFD过程热力学

4.1.1共溶剂及前驱物在SCCO2中的溶解度

4.1.2乙醇和N2相平衡

4.1.3吸附热力学

4.2 SCFD过程吸附动力学

结 论

参考文献

攻读硕士学位期间发表学术论文情况

致 谢

展开▼

摘要

将金属粒子分散到基材的孔道中所制备的纳米复合材料,在催化、光学、电化学等方面有广泛的应用。传统方法所制备的复合材料,在金属担载量、颗粒粒径及尺寸分布等方面还存在不足之处,因此本文应用超临界流体沉积法来制备纳米复合材料。该方法以介孔材料为基材,利用超临界流体良好的溶剂化特性,成功的解决了传统方法中金属颗粒容易聚集、基材孔道坍塌等问题,并且由于基材孔道的限制作用,所制备的复合材料中,纳米粒子粒径小、分散均匀,纳米线规则有序。本论文的工作主要有以下几方面: (1)以SBA-15为基材,AgNO3为前驱物,乙醇或乙二醇为共溶剂,在压力为20-25MPa,30℃、50℃和80℃条件下,制备了Ag/SBA-15纳米复合材料。通过实验发现,应用SCFD法制备复合材料的过程是稳定的、可重复的;沉积温度在30-80℃范围内时,随沉积温度的升高,成线趋势越好;乙醇作为共溶剂时,沉积压力大于8MPa,前驱物才能沉积在基材孔道中;泄压速度过快对复合材料制备是不利的;应用乙醇和乙二醇作为共溶剂时,在较短的沉积时间和较低的沉积压力下即可得到良好的Ag纳米线。 (2)应用浸渍法和氮气取代CO2制备了Ag/SBA-15纳米复合材料。应用等体积浸渍法,得到的AgNO3/SBA-15材料经烘干、还原后可以制备Ag纳米线/SBA-15复合材料,纳米线长度在100-600nm。应用氮气取代CO2,13mL乙醇作为共溶剂时,可以得到Ag纳米线/SBA-15复合材料,在所应用的沉积条件下,氮气同样处于超临界状态。 (3)以MCM—41为基材,AgNO3为前驱物,乙醇和乙二醇为共溶剂,在20-25 MPa、50℃时,制备了Ag/MCM—41纳米复合材料。调节共溶剂中乙醇和乙二醇用量为4.5mL和0.5mL,基材与前驱物比例为3:1时,在50℃下沉积3h,即可得到Ag纳米线/MCM—41纳米复合材料,纳米线连续、沿孔道方向生长,长度可达1000nm以上,复合材料中Ag含量为6.40wt%。当沉积时间延长到6h时,复合材料中Ag含量可达到10.04wt%。目前还没有在MCM—41孔道内制备出金属纳米线的报道,表明超临界流体沉积法在复合材料制备中的优势。 (4)对SCFD法制备复合材料过程中的溶解度、相平衡等热力学问题和前驱物在基材纳米级孔道中扩散的动力学问题进行了分析。通过实验观察,应用乙醇或乙二醇作共溶剂时,AgNO3可以溶解在超临界二氧化碳中,形成匀相。对超临界流体沉积过程中的吸附及扩散有了深入了解后,可以对复合材料中纳米相的担载量及形貌进行控制。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号