首页> 中文学位 >30CrMnSiNi2A螺纹件局部感应回火工艺模拟研究
【6h】

30CrMnSiNi2A螺纹件局部感应回火工艺模拟研究

代理获取

目录

第1章 绪论

1.1 引言

1.2数值计算方法、软件介绍

1.3 感应加热数值分析国内外研究现状

1.4 感应回火对材料组织性能的影响

1.5 本文的的主要研究内容

第2章 感应加热过程的数学模型

2.1 感应加热电磁场微分方程的建立

2.2 感应加热温度场方程的建立

2.3 30CrMnSiNi2A钢电磁性能参数的数学模型

2.4 本章小结

第3章 30CrMnSiNi2A螺纹件感应加热有限元分析

3.1 感应加热有限元模型建立

3.2 30CrMnSiNi2A光轴工件感应加热模拟结果分析与验证

3.3 本章小结

第4章 工艺参数对感应加热温度场分布影响

4.1 一般性规律

4.2 电流密度的影响

4.3 电流频率的影响

4.4 线圈厚度的影响

4.5本章小结

第5章 30CrMnSiNi2A螺纹件感应加热线圈优化设计

5.1 螺栓感应加热线圈优化设计流程

5.2感应加热线圈的优化设计

5.3 本章小结

第6章 感应加热对组织性能影响

6.1 感应加热后的组织形貌

6.2 感应加热工艺对硬度分布的影响

6.3本章小结

第7章 结论

参考文献

攻读硕士期间发表的论文和专利

致谢

声明

展开▼

摘要

30CrMnSiNi2A超高强度钢螺纹件在加工和热处理过程中,易在螺纹部位形成应力集中,需要对螺栓类制件的螺纹和退刀槽等部位进行局部回火处理。工件局部回火处理中使用高频感应加热取代落后的铅浴回火工艺已经成为发展趋势。通过数值模拟和实验相结合的方法确定30CrMnSiNi2A螺纹件感应局部回火工艺参数,对于使用绿色环保、高效率的感应加热系统替代落后的传统铅浴回火工艺以及获得高综合使用性能的30CrMnSiNi2A螺纹件具有十分重要的意义。
  本文从30CrMnSiNi2A螺纹件感应加热过程电磁-温度场数值模拟研究入手,建立了适合30CrMnSiNi2A螺纹件感应加热局部回火过程的数值计算模型,研究了各工艺参数对30CrMnSiNi2A钢制件感应加热影响规律,并且进行了30CrMnSiNi2A钢小型螺纹类工件局部回火感应线圈的优化设计,并结合感应加热工艺参数和30CrMnSiNi2A钢材料组织性能之间的关系,最终确定了30CrMnSiNi2A钢螺纹类工件感应局部回火的工艺参数。根据实验分析,得出以下结论:
  (1)30CrMnSiNi2A钢工件感应加热建模分析,包括实体模型的建立,30CrMnSiNi2A材料的热物性参数模型,实体模型的网格划分,边界载荷条件的设置以及加载求解。数值模拟结果和实际测量结果比较发现,数值模拟结果和实验结果相近,对实际操作具有一定的指导意义。
  (2)感应加热过程中,工件表面温度迅速达到相变温度,在相变点维持一段稳定后工件的温度曲线呈现不同的趋势;电流密度值正相关于感应磁场强度值大小,从而直接影响最终加热温度;电流频率会影响材料的透入深度,进而影响轴件感应加热后的心表温差。高频率能在极短时间内迅速提高材料表面温度,同时提高热效率,但高频阶段频率的增大产生影响越来越不明显,故而频率选择需要综合考虑;线圈厚度对感应温度的影响同电流密度相同,线圈壁厚的设计主要从感应器的功率损耗和经济方面考虑。
  (3)进行30CrMnSiNi2A螺纹件局部回火感应线圈进行了优化设计,得到的优化线圈为:感应线圈截面为矩形,矩形截面尺寸12×6 mm,线圈壁厚为1 mm,线圈内径为φ20 mm,匝数为2,线圈1的位置因素ι1为34.5 mm,线圈2的位置因素ι2为64 mm,两线圈的间距为5.5 mm。
  (4)30CrMnSiNi2A钢材料组织性能与感应加热工艺参数关系研究结果表明:铅浴回火和感应回火式样基体组织形貌基本一致,其组织都是保持着回火马氏体的板条形貌,且板条上存在着碳化物析出,这为感应局部回火代替铅浴回火提供了组织可能;硬度分析表明,工件表面最大温度决定径向硬度分布,且表面温度范围在450℃-550℃间,硬度分布符合工艺要求;适当的保温(保温时间1-5 s)可以优化径向硬度分布。
  本文中,所选取的30CrMnSiNi2A螺纹件局部回火工艺参数为:电流频率f=120KHZ,电流密度Js=25e6A/m2,加热时间为3 s,保温时间1-5 s。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号