首页> 中文学位 >近红外大口径波长移相干涉仪关键技术及应用研究
【6h】

近红外大口径波长移相干涉仪关键技术及应用研究

代理获取

目录

声明

摘要

图表目录

1 绪论

1.1 课题研究背景

1.2 国内外研究现状

1.2.1 大口径光学元件面形测量方法的比较

1.2.2 Φ600mm移相干涉仪的研究进展

1.2.3 移相干涉术的研究进展

1.3 课题来源

1.4 本论文的主要工作和内容安排

2 波长移相干涉机理的研究

2.1 移相干涉术的基本原理

2.2 波长移相干涉术的机理研究

2.2.1 波长移相干涉术的基本原理

2.2.2 激光器波长调谐原理

2.2.3 波长调谐激光器的参数要求

2.3 可调谐激光器高精度驱动系统

2.3.1 高精度电压驱动源的设计

2.3.2 高精度电压驱动源的测试结果

2.4 本章小结

3 波长移相干涉移相量标定方法的研究

3.1 标定移相量的原因分析

3.1.1 干涉腔长的测量误差

3.1.2 电压驱动源的输出电压误差

3.2 基于李萨如图技术的移相量标定方法

3.2.1 标定原理

3.2.2 模拟仿真

3.2.3 实际干涉图计算

3.3 基于一维时域傅立叶变换的移相量标定方法

3.3.1 标定原理

3.3.2 实验与分析

3.4 本章小结

4 波长移相干涉相位计算方法的研究

4.1 长腔长下引起波面计算误差的原因分析

4.1.1 激光器波长分辨率的限制

4.1.2 环境振动的影响

4.2 波长调谐随机移相算法

4.2.1 算法原理

4.2.2 模拟仿真

4.2.3 实验与分析

4.3 自适应相位筛选法

4.3.1 原理

4.3.2 实验与分析

4.4 基于DCT算法的种子点法

4.4.1 DCT算法原理

4.4.2 DCT-SP算法原理

4.4.3 实际计算与结果分析

4.5 本章小结

5 斐索型近红外大口径波长移相干涉仪的光学系统设计及精度分析

5.1 干涉仪的光学系统设计

5.1.1 干涉仪整体光路

5.1.2 准直物镜

5.1.3 成像系统

5.2 近红外大口径波长移相干涉仪的调校

5.3 利用ZYGO 24’’干涉仪测量标准透射平晶面形误差

5.3.1 ZYGO 24’’干涉仪的系统精度检验

5.3.2 ZYGO 24’’干涉仪的测量误差

5.3.3 石英标准透射平晶TF3#的测量

5.4 干涉仪的光学质量与测量重复性

5.4.1 光学质量与重复性测量

5.4.2 三面互检对平晶的测量

5.5 干涉仪测量不确定

5.5.1 标准不确定度A类评定

5.5.2 标准不确定度B类评定

5.5.3 合成标准不确定度的计算

5.6 本章小结

6 近红外大口径波长移相干涉仪的应用研究

6.1 平行平板的测量

6.1.1 平行平板测量的干涉方法分析

6.1.2 波长移相干涉仪测量平行平板的原理

6.1.3 模拟仿真

6.1.4 实验

6.1.5 分析及结论

6.2 大口径光学元件的面形测量

6.2.1 脉冲压缩光栅测量

6.2.2 大口径碳化硅平面反射镜

6.2.3 平面反射镜测量

6.2.4 航天用轻量化微晶平晶检测

6.3 小角度、长腔长下的测量

6.4 本章小结

7 全文总结

7.1 本文所做工作

7.2 本文的创新点

7.3 有待解决的问题

致谢

参考文献

附录

攻读博士学位期间参与申请专利情况

展开▼

摘要

大口径平面光学元件在天文、航天、强激光等领域有着重要且广泛的应用,例如在我国神光Ⅲ高功率固体激光装置的重大项目中使用了大量高精度的大口径平面光学元件,这些光学元件在加工与使用过程中需要能够对其面形和光学均匀性进行高精度检测的近红外大口径干涉仪。针对神光Ⅲ的研制需求,本论文开展了基于波长移相方式的近红外大口径干涉仪的研制工作。尽管波长移相方式比硬件移相方式更适合应用于大口径光学元件的干涉测量中,但波长移相干涉时移相量大小不仅与波长变化量有关,还与干涉腔长有关,且随着腔长增大,对波长分辨率的要求越高。而根据应用需求,某些大口径光学元件需在布儒斯特角或小角度下进行测量,此时,干涉腔长过长,无法实现移相量的准确标定。因此需解决短腔长测量时不同腔长下的移相量标定问题和长腔长测量时的相位计算问题。此外,工作波长近红外、测量孔径(φ)600mm,需具备足够的中频段传递能力、能够在测量区域非连通和长腔长下进行测量等条件对干涉仪的相位计算、光学系统设计和光路调校等方面提出了更高的要求。本文围绕以上几个关键技术及其应用展开了研究。
   移相量的精度直接关系到相位计算精度,为了解决在不同干涉腔长下测量时的移相量实时标定问题,本文提出了基于李萨如图技术和基于一维时域傅立叶变换的移相量标定方法,前者通过李萨如图拟合技术实现移相量的计算,精度较高。该方法不要求移相量相等,且在超短腔长(腔长为0.01m左右)时仍能使用,但其对于干涉图的对比度要求较高,同时参与计算的两个点的相位差不能是π的倍数。后者通过对空间某点不同时刻的光强值进行一维傅立叶变换等处理得到移相量,该方法没有前一种方法的缺点,但要求移相量相等。将该方法应用于波长移相干涉仪中,其测量结果与Zygo GPI移相干涉仪的测量结果偏差在λ/50(PV值)范围内。结果表明,两种方法均能够实现波长移相干涉测量时的移相量标定,且后者计算性能更稳定。
   在长干涉腔长下测量时,由于移相步进量分辨率受限导致偏离π/2,给波面计算带来了误差。针对此情况,首先,研究了波长调谐随机移相算法,该算法不标定移相量,采用最小二乘原理和迭代计算,在适合的收敛条件下实现相位的计算。在长腔长下测量时,该方法的测量结果与短腔长下的测量结果偏差约λ/70(PV值)。然后,提出了自适应相位筛选法,该算法对多幅移相干涉图进行筛选得到移相步进量为π/2的干涉图。在长腔长下测量时,该方法的测量结果与短腔长下的测量结果偏差约λ/300(PV值)。结果表明,这两种方法都可以很好地解决长腔长测量时移相量标定的技术问题,且后者比前者计算精度高。
   针对非连通区域的相位解包问题,提出了基于离散余弦变换算法的种子点相位解包方法。该方法利用种子点法对各分离区域进行解包,再利用离散余弦变换算法求得的干涉级次,将各分离区域的解包相位进行统一。实验验证了该方法的正确性和精度。该方法能够快速准确地实现非连通区域的相位解包。
   针对干涉仪的研制需求,光路设计时采用单片双凸非球面作为准直物镜、成像系统采用双远心光路、去除旋转毛玻璃等措施来满足要求。针对波长调谐激光器的输出波长分辨率与激光器控制器的分辨率相关的特性,研制了高精度的电压驱动源,从硬件上保证了激光器能够实现高精度地波长调谐。针对干涉光路不可见的特点,采用可见光辅助调校技术实现了系统的调校。并对系统的光学质量、重复性和测量不确定度进行测量和分析,干涉仪系统的测量不确定度优于λ/15。
   最后研究了近红外大口径波长移相干涉仪的应用。首先研究了波长移相干涉仪测量平行平板的光学参数。测量时,只需要平行平板放入测量和空腔测量两个步骤,采用傅立叶变换算法实现多表面干涉条纹的分离。通过模拟仿真和实验验证了该算法的正确性和精度。该方法可用于测量平行平板的前后表面面形及光学均匀性,且测量步骤简单、精度较高,尤其适用于大口径平行平板的测量。然后研究了近红外大口径干涉仪在大口径光学元件以及长腔长下的测量。实验结果表明,该干涉仪可以高精度地实现大口径光学元件和长腔长下光学元件的面形测量。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号