首页> 中文学位 >冲积河流水力及河床形态的数值模拟研究
【6h】

冲积河流水力及河床形态的数值模拟研究

代理获取

目录

文摘

英文文摘

前言

学位论文使创性声明及学位论文使用说明

Chapter 1 Introduction

1.1 General Overview

1.2 Literatures Review

1.2.1 One-Dimensional Models

1.2.2 Two-Dimensional Models

1.3 Thesis Objective

Chapter 2 One-Dimensional Numerical Model for Degradation and Armoring Process in Alluvial Channels

2.1 Introduction

2.2 Types and Causes of Degradation

2.3 Governing Equations

2.4 Armor Layer Development

2.5 Probability of the Particle to Stay on the Bed

2.6 Computation of the Median Sediment Diameter

2.7 Numerical Scheme

2.8 Procedure for the Calculation of Degradation

2.8.1 Initial and Boundary Condition

2.8.2 Application and Comparison with Experimental Results

2.9 Conclusion

Chapter 3 Application of Stream Tube Model GSTARS2.1 to Simulate Degradation Process in Tigris River

3.1 Introduction

3.2 Review of the GSTARS2.1 Model

3.2.1 Governing Equations for Hydrodynamics

3.2.2 Model Representation

3.3.3 Flow Resistance

3.3.4 Stream Line and Stream tubes

3.3.5 Sediment Routing

3.3 Discretization of the Governing Equations of the Model

3.4 Sediment Transport Capacity Computation

3.5 Bed Sorting and Armoring

3.6 Computation of Width Changes

3.7 Channel Side Slope Adjustments

3.8 Application of the GSTARS 2.1 model for degradation in alluvial channels

3.8.1 Verification of the Model

3.8.2. Application of the Model on a Reach From Tigris River

3.9 Comparison between 1D Model and GSTARS2.1 Model

3.10 Conclusion

Chapter 4 2D Numerical Model for Channel Flow and Morphological Changes

4.1 Introduction

4.2 Governing Equations for hydrodynamics

4.2.1 Governing Equations

4.2.2 Eddy Viscosity Models

4.2.3 Two-dimensional k-ε model for depth-integrated flow

4.2.4. Shear Stress on the Bed

4.3 Finite Element Approach

4.3.1 Introduction

4.3.2 Interpolation Functions

4.3.3 Finite Element Operators for Calculating Derivatives

4.3.4 Four Node Bilinear Element

4.3.5 Staggered Mesh for Solving the Continuity Equation

4.3.6 Solution Method

4.4 Upwinding Scheme

4.5 Boundary and Initial Conditions

4.5.1 Inlet Boundary

4.5.2 Outlet Boundary

4.5.3 Solid Wall boundary

4.5.4. Boundary Condition for k-ε Model

4.6 Sediment Transport and Bed Change Simulation

4.6.1 Bed Load Formula

4.6.2 Correction to the critical shear stress

4.6.3 Bed Load Motion Affected by Transversal Slope

4.6.4 Bed Load Motion Affected by Secondary Flow

4.6.5 Bed Form Change Due to Gravity

4.6.6 Bed Morphological Change Due to Bed Load Transport

4.6.7 Suspended Sediment Transport Model

4.6.8 Bank Erosion and Channel Migration Model

4.7 Flow Chart of the Main Structure of the Model

4.8 Part A: Effect of Channel Curvature and Transverse Bed Slope on Flow Characteristics and Bed Topography

4.8.1 Introduction

4.8.2 Model Verification and Application

4.8.3 Data Analysis

4.8.3 Data Analysis 4.8.3.1 Water Surface Analysis

4.8.3 Data Analysis 4.8.3.2 Variation in velocity distribution

4.8.3 Data Analysis 4.8.3.3 Bed Level Changes

4.8.4 Conclusion

4.9 Part B:Application of Depth-Integrated 2-D model CCHE2D to Simulate the Flow Field in Ganjiang River

4.9.1 Introduction

4.9.2 Description of Study Reach

4.9.3 Input Data and Boundary Conditions

4.9.4 Verification of the model

4.9.5 Application of the Model

4.9.6 Conclusion

Chapter 5 Summary and Conclusions

5.1 Summary

5.2 Conclusions

5.3 Future Research

References

ACKNOWLEDGEMENT

List of Publications

展开▼

摘要

随着计算机技术发展,冲积河流的水流泥沙运动河床形态变化的数值模型显得日益重要并在工程中广泛应用,众多的一维、二维水沙模型成为实验和原型工程分析、设计及管理等方面的有效工具.本文针对不同问题的特点及要求,建立了三个不同的数学模型研究冲积河流的河床形态变化机理.首先建立了一维数学模型研究顺直河道的河床冲刷及河床粗化过程.模型考虑了非均匀床沙,河床形态的时间空间变化过程.结果表明:冲积河流的冲刷及床沙粗化过程与水力、泥沙特性有关,用水槽资料进行模型验证,计算结果与实验吻合较好.论文第二部分运用流管模型(GSTARS2.1)研究底格里斯河摩苏尔大坝下游河段河床冲刷及床沙粗化.GSTARS2.1适合于定床、动床水沙演进模拟、准二维、准三维的河床变化,在泥沙处理方面考虑了分组泥沙、平衡与非平衡条件下的床沙粗化过程.用实测资料进行了冲刷及床沙粗化验证,结果标明:研究河段的河床冲刷下降及床沙粗化的速率很小,近坝下游河段河床下降了0.5m,在摩苏尔市河床下降了0.1m,在摩苏尔大坝下游附近河段河床粗化明显,随着床沙粗化.论文第三部分应用水深平均的二维水动力泥沙数学模型(CCHE2D)研究冲积河流的水沙运动及河床形态变化.模型计算研究两个算例,首先研究了冲积河道曲率和床面横向坡度对不同水流条件下水流运动和河床形态特性影响,然后将模型运用于赣江南昌生米大桥对水流运动特性影响及河段航道条件的影响.计算结果表明:在弯曲河道凹岸、凸岸存在明显的水位差,该水位差随流量、曲率及横向坡度增加而增大,凹岸的流速大于凸岸值并随凹凸河床横向坡度增加而增大.对床面没有横向坡度的弯道,在弯顶处,凸岸流速大于凹岸,自弯顶向下游,凹岸流速增大,在弯道出口凹岸流速大于凸岸.在河道曲率为180°时且床面存在横向坡度,河道凹岸沿程泥沙淤积,河道凸岸从进口到弯顶河床冲刷,弯顶以后泥沙淤积.在床面没有横向坡度时,从进口到弯顶凸岸河床冲刷,弯顶以后泥沙淤积.在曲率为90°时,河道凸岸从进口到弯顶河床冲刷,弯顶以后泥沙淤积.在顺直河段,河床有所冲刷,冲刷强度大于弯道情况.冲刷及淤积率随流量和曲率的增加而增大.模型运用于赣江南昌生米大桥工程,在自然条件下不满足通航要求.根据河道地形条件,在大桥上游江心洲的开挖工程后水流向与桥轴线法向夹角满足规范的通航安全要求.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号