首页> 中文学位 >基于含氟丙烯酸树脂的模压激光全息记录材料
【6h】

基于含氟丙烯酸树脂的模压激光全息记录材料

代理获取

目录

第一个书签之前

摘 要

Abstarct

1 绪论

1.1 前言

1.2 激光全息防伪技术

1.2.2 激光全息技术分类与发展

1.2.3 模压激光全息防伪材料

1.2.4 模压激光全息记录材料

1.3 模压激光全息记录材料用丙烯酸树脂改性

1.3.1 丙烯酸树脂的改性方法

1.3.2 高能射线辐照改性含氟材料

1.3.3 化学刻蚀改性含氟材料

1.4 论文的研究意义及主要内容

2 实验部分

2.1 原料与试剂

2.2 仪器与表征

2.3 实验方法

2.3.2 丙烯酸树脂/萘钠刻蚀PTFE复合薄膜的制备

3 结果与讨论

3.1 丙烯酸树脂/辐照接枝PTFE复合薄膜的结构与性能

3.1.1 PMMA-g-PTFE微粉的结构分析

3.1.2 单体质量分数与辐照剂量对PMMA-g-PTFE微粉的影响

3.1.3 丙烯酸树脂/PMMA-g-PTFE微粉的分散特性

3.1.4 丙烯酸树脂/PMMA-g-PTFE复合薄膜的表面性质

3.2 丙烯酸树脂/萘钠刻蚀PTFE复合薄膜的结构与性能

3.2.1 Na-Naph-PTFE微粉的结构分析

3.2.2 处理液浓度与刻蚀时间对Na-Naph-PTFE微粉的影响

3.2.3 丙烯酸树脂/Na-Naph-PTFE微粉的分散特性

3.2.4 丙烯酸树脂/Na-Naph-PTFE复合薄膜的表面性质

4 全文结论与研究展望

4.1 全文结论

4.2 研究展望

致谢

参考文献

[1] Blanche P. A., Bablumian A., Voorakaranam R., et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature, 2010, 468(7320): 80-83.

[2] Han S., Bae H. J., Junhoi K., et al. Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs. Adv. Mater., 2012, 24(44): 5924-5929.

[3] Song B., Wang H., Zhong Y., et al. Fluorescent and magnetic anti-counterfeiting realized by biocompatible multifunctional silicon nanoshuttle-based security ink. Nanoscale, 2017, 10(4): 1617-1621.

[4] Cheung H. H., Choi S. H. Implementation issues in RFID-based anti-counterfeiting systems. Comput. Ind., 2011, 62(7): 708-718.

[5] Kang H., Lee J. W., Nam Y. Inkjet-printed multiwavelength thermoplasmonic images for anticounterfeiting applications. Acs Appl. Mater. Inter., 2018, 10(7): 6764-6771.

[6] Gabor D. A new microscopic principle. Nature, 1948, 161(4098): 777-778.

[7] Leith E. N., Upatnieks J. Reconstructed wavefronts and communication theory. J. Opt. Soc. Am., 1962, 52(10): 1123-1130.

[8] Kubota T. 48 years with holography. Opt. Rev., 2014, 21(6): 883-892.

[9] Han S., Yu B. A., Chung S., et al. Filter characteristics of a chirped volume holographic grating. Opt. Lett., 2004, 29(1): 107-109.

[10] Benton S. A. Hologram reconstruction with extended incoherent sources. J. Opt. Soc. Am., 1969, 59: 1545A-1546A.

[11] 苏显渝, 李继陶, 曹益平, 等. 信息光学. 第2版. 北京: 科学出版社, 2011. 113-117.

[12] Peng H. Y., Bi S. G., Ni M. L., et al. Monochromatic visible light "photoinitibitor": Janus-faced initiation and inhibition for storage of colored 3D images. J. Am. Chem. Soc., 2014, 136(25): 8855-8858.

[20] D'amato S. F., Weitzen E. H., Park F. Embossed holograms formed on hard metal surfaces. United States, 4,900,111, 1990.

[21] 徐耀学. 激光全息OPP镭射膜的生产与应用. 中国包装, 2001, (3): 97.

[22] 张静芳. 光学防伪技术及其应用. 第1版. 北京: 国防工业出版社, 2011. 282-288.

[23] Schaefer M. W., Levendusky T. L., Sheu S., et al. Methods for transferring holographic images into metal surfaces. United States, US 7,094,502 B2, 2006.

[24] 徐大雄. 透明激光彩虹模压全息图在防伪包装领域的应用. 印刷技术, 1999, (10): 48-59.

[25] Canales J., Mu?oz M. E., Fernández M., et al. Rheology, electrical conductivity and crystallinity of a polyurethane/graphene composite: Implications for its use as a hot-melt adhesive. Compos. Part A: Appl. S., 2016, 84: 9-16.

[26] Singh K., Dupaix R. B. Hot-embossing experiments of polymethyl methacrylate across the glass transition temperature with variation in temperature and hold times. Polym. Eng. Sci., 2012, 52(6): 1284-1292.

[27] Meng L., Wang X. J., Martin O., et al. A new class of non-isocyanate urethane methacrylates for the urethane latexes. Polymer, 2017, 109(27): 146-159.

[39] Gong D. W., Long J. Y., Fan P. X., et al. Thermal stability of micro-nano structures and superhydrophobicity of polytetrafluoroethylene films formed by hot embossing via a picosecond laser ablated template. Appl. Surf. Sci., 2015, 331: 437-443.

[40] Wang Z. F., Wang Z. G. Synthesis of cross-linkable fluorinated core-shell latex nanoparticles and the hydrophobic stability of films. Polymer, 2015, 74: 216-223.

[41] Michael Q. T., Kingsley K. C. H., Gerhard K., et al. Carbon fibre reinforced poly(vinylidene fluoride): Impact of matrix modification on fibre/polymer adhesion. Compos. Sci. Technol., 2008, 68(7-8): 1766-1776.

[42] 谢苏江. 聚四氟乙烯的改性及应用. 化工新型材料, 2002, 30(11): 26-30.

[43] Alaaeddine A., Boschet F., Ameduri B. Synthesis of methallylic monomers bearing ammonium side-groups and their radical copolymerization with chlorotrifluoroethylene. J. Polym. Sci. Part A, 2014, 52(12): 1721-1729.

[44] Ja?Czuk B., Zdziennicka A., W?Jcik W. Relationship between wetting of teflon by cetyltrimethylammonium bromide solution and adsorption. Eur. Polym. J., 1997, 33(7): 1093-1098.

[45] Lee S. W., Hong J. W., Wye M. Y., et al. Surface modification and adhesion improvement of PTFE film by ion beam irradiation. Nucl. Instr. Methods B, 2004, 219-220(1): 963-967.

[46] Lee M. K., Park C., Jang T. S., et al. Enhanced mechanical stability of PTFE coating on nano-roughened NiTi for biomedical applications. Mater. Lett., 2018, 216: 12-15.

[47] Chiu Y. L., Chan H. F., Phua K. K., et al. Synthesis of fluorosurfactants for emulsion-based biological applications. Acs Nano, 2014, 8(4): 3913-3920.

[48] Harald H., Navneet S., Tahir S., et al. Influence of plasma pre-treatment of polytetrafluoroethylene (PTFE) micropowders on the mechanical and tribological performance of polyethersulfone (PESU)-PTFE composites. Wear, 2015, 328-329: 480-487.

[49] Sung R. K. Surface modification of poly(tetrafluoroethylene) film by chemical etching, plasma, and ion beam treatments. J. Appl. Polym. Sci., 2000, 77(9): 1913-1920.

[50] Bucio E., Burillo G. Radiation grafting of pH and thermosensitive N-isopropylacrylamide and acrylic acid onto PTFE films by two-steps process. Radiat. Phys. Chem., 2007, 76(11-12): 1724-1727.

[56] Li R., He X. Z., Gao Q. H., et al. Variations in surface and electrical properties of polytetrafluoroethylene film after plasma-induced grafting of acrylic acid. Nucl. Sci. Tech., 2016, 27(3): 61-69.

[57] Lappan U., Geissler U., Gohs U., et al. Grafting of styrene into pre-irradiated fluoropolymer films: Influence of base material and irradiation temperature. Radiat. Phys. Chem., 2010, 79(10): 1067-1072.

[58] Klüpfel B., Lehmann D. Functionalization of irradiated PTFE micropowder with methacryl- or hydroxy groups for chemical coupling of PTFE with different matrix polymers. J. Appl. Polym. Sci., 2006, 101(5): 2819-2824.

[59] Yang C. Q., Xu L., Zeng H. Y., et al. Water dispersible polytetrafluoroethylene microparticles prepared by grafting of poly(acrylic acid). Radiat. Phys. Chem., 2014, 103(5): 103-107.

[60] Noh I., Chittur K., Goodman S. L., et al. Surface modification of poly(tetrafluoroethylene) with benzophenone and sodium hydride by ultraviolet irradiation. J. Polym. Sci. Part A, 2015, 35(8): 1499-1514.

[74] Siegel S., Hedgpeth H. Chemistry of irradiation induced polytetrafluoroethylene radicals: I. Re-examination of the EPR spectra. J. Chem. Phys., 1967, 46(10): 3904-3912.

[75] Fang F. F., Liu Y. D., Choi H. J., et al. Core-shell structured carbonyl iron microspheres prepared via dual-step functionality coatings and their magnetorheological response. Acs Appl. Mater. Inter., 2011, 3(9): 3487-3495.

[76] Kwisnek L., Kaushik M., Hoyle C. E., et al. Free volume, transport, and physical properties of n-alkyl derivatized thiol-ene networks: Chain length effect. Macromolecules, 2010, 43(43): 3859-3867.

[77] Wei J., Chuan W. Z., Jing L. H., et al. Enthalpy relaxation near the glass transition of polystyrenes with controlled interchain proximity. Macromolecules, 2008, 41(14): 5356-5360.

[78] Fox T. G., Flory P. J. The glass temperature and related properties of polystyrene. Influence of molecular weight. J. Polym. Sci., 1954, 14(75): 315–319.

[79] Fox T. G., Flory P. J. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys., 1950, 21(6): 581-591.

[80] An Q. F., Chen J. T., Guzman M. D., et al. Multilayered poly(vinylidene fluoride) composite membranes with improved interfacial compatibility: Correlating pervaporation performance with free volume properties. Langmuir, 2011, 27(17): 11062-11070.

[81] Heinen W., Rosenm?ller C. H., Wenzel C. B., et al. 13C NMR study of the grafting of maleic anhydride onto polyethene, polypropene, and ethene-propene copolymers. Macromolecules, 1996, 29(4): 1151-1157.

[82] Papke N., Karger K. J. Determination methods of the grafting yield in glycidyl methacrylat-grafted ethylene/propylene/diene rubber (EPDM-g-GMA): Correlation between FTIR and 1H-NMR analysis. J. Appl. Polym. Sci., 1999, 74(11): 2616-2624.

[90] Shulga Y. M., Vasilets V. N., Kiryukhin D. P., et al. Polymer composites prepared by low-temperature post-irradiation polymerization of C2F4 in the presence of graphene-like material: Synthesis and characterization. Rcs Adv., 2015, 5(13): 9865-9874.

[91] Chen F. T., Jiang X. S., Liu R., et al. Well-defined PMMA brush on silica particles fabricated by surface-initiated photopolymerization (SIPP). Acs Appl. Mater. Inter., 2010, 2(4): 1031-1037.

[109] 秦岩, 贾金荣, 黄志雄. 钠-萘化学处理与低温射频等离子体处理PTFE. 工程塑料应用, 2011, 39(7): 4-7.

[110] William C. Developments in adhesives. 1 ed. London: Applied Science Publishers, 1977.

[111] Sun W., Chen Y. W., Deng Q. L., et al. Preparing polymer brushes on polytetrafluoroethylene films by free radical polymerization. Appl. Surf. Sci., 2006, 253(2): 983-988.

[117] 陈新康, 段仲绵. 表征聚四氟乙烯内在性能的一些测试方法. 有机氟工业, 1989, (3): 31-38.

附录 攻读硕士学位期间发表的学术论文与专利

展开▼

摘要

模压激光全息防伪技术因其效率高、不可重复使用、易于商品包装等,成为当今市场上打击假冒伪劣的主流手段。此技术是依靠记录层树脂上的全息图发挥承载与传递防伪信息的作用,目前此层普遍使用热塑性丙烯酸树脂。这种材料在全息图转移的模压过程中,与镍制母版间的相互作用力较大,脱模时难以分离,常出现树脂粘连及损坏现象。为解决这一问题,通过向丙烯酸树脂中添加聚四氟乙烯(PTFE)微粉来降低表面能。但PTFE与丙烯酸树脂的相容性极差,两者难以均匀混合,影响了复合薄膜性能。基于此,本文采取电子束共辐照接枝与萘钠化学刻蚀手段改善PTFE微粉的表面润湿性。 论文的主要工作如下:首先采用电子束共辐照法制备接枝聚甲基丙烯酸甲酯PTFE微粉(PMMA-g-PTFE),探讨了甲基丙烯酸甲酯的浓度、辐照剂量与接枝率的关系,研究了接枝对PTFE微粉与丙烯酸树脂相容性的影响。结果显示氟碳表面活性剂能显著减少共辐照接枝过程中单体均聚、交联物的生成;17.8%接枝率的PMMA-g-PTFE微粉在丙烯酸树脂中分散均匀,二者相容性得到明显改善。因表面氟含量和粗糙度增加,添加14wt%微粉的丙烯酸树脂/PMMA-g-PTFE复合薄膜水接触角提高了21.1%。 另一方面,研究了萘钠化学刻蚀PTFE微粉(Na-Naph-PTFE)对丙烯酸树脂薄膜表面性能的改善效果,探讨了萘钠处理液浓度和刻蚀时间对PTFE微粉表面化学组成和团聚程度的影响。结果表明,虽然高浓度萘钠处理液与长刻蚀时间能实现微粉表面“脱氟加氧”目标,但过度刻蚀反而导致碳化与团聚,不利于改进PTFE与丙烯酸树脂间的相容性。进而发现,0.4mol/L萘钠处理液刻蚀5min的Na-Naph-PTFE微粉能同时满足低氟高氧量、少碳化、轻团聚的要求,其与丙烯酸树脂复合制备的薄膜表面疏水性随微粉添加量的增加而增强。 比较上述两种改性方法可知,电子束辐照接枝法可控性强,对丙烯酸树脂表面性能改善效果明显;萘钠化学刻蚀法中的含氧碳链引入效率高,没有副产物的影响。制备的丙烯酸树脂/改性PTFE复合薄膜表面疏水性增强,用作模压激光全息防伪记录材料时,能有效地减小和镍制母版间的相互作用力,改善模压性能,在防伪领域中具有良好的应用前景。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号