首页> 中文学位 >百瓦量级2K超流氦制冷系统的动态仿真和实验研究
【6h】

百瓦量级2K超流氦制冷系统的动态仿真和实验研究

代理获取

目录

摘要

ABSTRACT

CONTENTS

第1章 绪论

1.1 课题背景

1.2超导射频腔及其氦冷却技术发展

1.2.1超导射频腔技术的发展

1.2.2超流氦冷却技术的发展

1.3超流氦制冷系统的发展

1.4氦制冷系统的动态特性研究

1.5 本文主要研究内容

第2章 百瓦量级超流氦制冷却循环优化设计

2.1 百瓦量级超流氦系统热力循环方案设计

2.1.1 氦制冷循环分析

2.1.2 百瓦量级超流氦制冷循环设计

2.1.3 超流氦低温系统数值模型及性能评价指标

2.2 超导加速腔运行温度优化

第3章 氦制冷循环主要设备与动态仿真数学模型

3.1 氦制冷循环主要设备

3.1.1 螺杆压缩机系统

3.1.2 氦气纯化系统

3.1.3 超流氦制冷循环真空系统

3.1.4 低温调节阀门测试

3.1.5 低温换热器和负压换热器

3.2 超流氦制冷系统降温过程动态仿真数学模型

3.3 本章小结

第4章 4.5K部分氦制冷循环的降温过程模拟

4.1 系统解耦处理

4.2 4.5K制冷系统稳态过程仿真

4.3 4.5K制冷系统动态降温过程仿真

4.3.1 各级换热器的降温冷却过程模拟

4.3.2 制冷系统降温冷却过程模拟

4.3.3降温冷却过程模拟结果分析

4.4 4.5K氦制冷机降温测试实验

4.5 本章小结

第5章 2K超流氦制冷系统的降温模拟

5.1 2K超流氦制冷系统

5.2 超流氦制冷系统降温冷却过程动态模拟

5.2.1 负压换热器的降温模拟

5.2.2 超流氦制冷系统降温冷却过程模拟

5.3 超流氦制冷系统动态降温模拟结果及分析

结论

参考文献

攻读学位期间发表的论文

致谢

博士学位论文原创性声明

个人简历

展开▼

摘要

随着现代粒子加速器、可控核聚变装置等大科学工程的建设,推进了超导磁体和超导加速腔向更大的磁场强度和更高的加速梯度发展,同时也促进为超导设备提供冷量的氦低温系统也由4.2K液氦温区向超流氦温区发展。
  本文以超导射频腔超流氦低温冷却系统为研究对象,采用数学模拟方法深入研究了超导射频腔的超流氦低温系统的热力循环性能,分析了超导加速腔的工作运行温度对超导腔低温系统功率消耗的影响关系等;针对4.5K氦低温系统和2K超流氦低温系统中不同设备的动态特性,采用集中参数法和分布参数法,建立了系统的动态仿真数学模型,编制了动态降温过程仿真程序,对4.5K氦低温系统以及超流氦低温系统的降温过程进行了深入的研究分析。
  经济合理的超流氦热力循环是进行动态降温过程分析的前提,本文首先利用大型过程分析软件及其用户自定义模块对温度为2K、制冷量为100W的超流氦低温冷却的热力循环方案进行了研究,从提高超流氦冷却系统的效率方面,对百瓦量级超流氦低温制冷系统进行了深入的冷却流程方案的热力学分析和研究,比较了不同冷却方案下超流氦制冷系统的制冷效率等因素,研究结果表明:带回收负压氦气冷量的负压换热器和预冷用低温换热器的氦制冷循环,其系统的制冷效率最大,但系统结构也较复杂,设备投入成本高,运行费用低。
  以广泛用于高能物理加速器的1.3GHz超导加速腔为例,深入分析研究了影响其工作性能的BCS表面电阻和制冷系统耗功与超导腔运行温度之间的关系,获得不同制冷温度下由超导腔的BCS表面电阻引起的超导腔射频损耗和制冷系统功耗,研究表明:合理选择超导加速腔的工作运行温度对于降低制冷系统的运行成本效果显著。最后,根据这两种主要损耗确定了适合该型超导腔的工作运行温度。
  氦系统动态仿真研究,主要是为了模拟氦系统在降温、升温以及非正常稳态运行等动态变化热力过程,研究动态过程中系统热力性能的变化规律,为系统的优化设计、实际运行操作提供理论依据。
  针对优化的超流氦热力循环方案,本文将相应的超流氦制冷系统划分为4.5K氦制冷系统和超流氦制冷系统两部分。运用制冷系统热动力学理论,采用集中参数法和分布参数法,分别根据各设备的工作特点,建立其动态仿真数学模型,并采用计算机编程语言FORTRAN对氦低温系统不同降温方案的降温过程进行了仿真模拟。
  动态仿真中考虑并研究了主要的低温调节阀门的开度、相应的氦气质量流量对降温过程系统各点热力参数的影响。结果表明,降温过程中压缩机旁通阀的开度变化直接影响系统的降温时间。进入系统的氦气质量流量受到透平膨胀机和节流阀流通能力的限制,必须在降温过程中调节压缩机的旁通阀来控制进入冷箱的氦气质量流量。
  通过动态仿真,获得了氦低温系统动态降温过程中沿氦气流动方向上复杂的温度变化规律,给出了氦制冷机系统内部沿氦气流动方向上温度测点的温度值在温熵图上的变化趋势。
  通过对4.5K液氦制冷系统以及超流氦制冷系统的动态降温过程的数值模拟还发现:采用低温换热器的超流氦制冷系统在降温过程中产生2K超流氦的时间要早于系统中产生130kPa的饱和液氦所需要的时间。
  仿真结果还表明,氦制冷系统的动态仿真结果可以对优化氦制冷机试车方案、节省调试费用、节约调试时间、进一步提高氦制冷机制冷效率提供可靠的理论基础。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号